
Dealing with Noise in Defect Prediction
Sunghun Kim1, Hongyu Zhang2, Rongxin Wu2 and Liang Gong2

1 Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong
2 School of Software, Tsinghua University, Beijing, China

hunkim@cse.ust.hk, hongyu@tsinghua.edu.cn, {se.wu.rongxin, jacksongl1988}@gmail.com

ABSTRACT
Many software defect prediction models have been built using
historical defect data obtained by mining software repositories
(MSR). Recent studies have discovered that data so collected
contain noises because current defect collection practices are
based on optional bug fix keywords or bug report links in change
logs. Automatically collected defect data based on the change logs
could include noises.

This paper proposes approaches to deal with the noise in defect
data. First, we measure the impact of noise on defect prediction
models and provide guidelines for acceptable noise level. We
measure noise resistant ability of two well-known defect
prediction algorithms and find that in general, for large defect
datasets, adding FP (false positive) or FN (false negative) noises
alone does not lead to substantial performance differences.
However, the prediction performance decreases significantly
when the dataset contains 20%-35% of both FP and FN noises.
Second, we propose a noise detection and elimination algorithm to
address this problem. Our empirical study shows that our
algorithm can identify noisy instances with reasonable accuracy.
In addition, after eliminating the noises using our algorithm,
defect prediction accuracy is improved.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement–Restructuring, reverse engineering, and
reengineering, D.2.8 [Software Engineering]: Metrics – Product
metrics, K.6.3 [Management of Computing and Information
Systems]: Software Management – Software maintenance

General Terms
Algorithms, Measurement, Experimentation

Keywords
Defect prediction, noise resistance, buggy changes, buggy files,
data quality.

1. INTRODUCTION
Defect prediction is a very active area in software engineering
research [7, 10, 11, 13, 18, 19, 33, 35]. Many effective new
metrics and algorithms to predict defect-proneness have been

proposed. When researchers evaluate their new algorithms or
metrics, they often use defect information collected from the
change logs in Software Configuration Management (SCM)
systems and from the bug reports in bug tracking systems.

Unfortunately, recent studies have found that extracted defect
information from change logs and bug reports are noisy. For
example, Aranda and Venolia et al. [1] manually inspected ten
bug reports in Microsoft and interviewed developers related to the
reports. They found lots of important information missing in bug
reports. Bird et al. [4] also studied the quality of change logs and
bug reports, and found that many change logs and bug reports
were not linked. They also found that the noisy defect information
could seriously affect the performance of a bug prediction
algorithm.
These surprising findings challenge the validity of all existing bug
prediction algorithms by raising important questions: How could
we deal with the noise in the defect data? Are existing defect
prediction algorithms still useful if their prediction models are
trained by noisy defect data? How much noise is acceptable for
bug prediction algorithms? How could we detect and eliminate the
noise?

This paper addresses these questions. First, we propose a method,
which intentionally adds false positive and negative information
only in the training data to measure noise resistance of a given
bug prediction algorithm. Using the proposed method, we
measure noise resistance of two well-known bug prediction
algorithms, change classification and buggy file prediction. We
found that these two algorithms are relatively noise resistant.
When there are enough buggy instances in the datasets, defect
prediction performance (measured in terms of F-measure) does
not decrease significantly with the increases of false positive or
false negative noises. We also find that these algorithms are more
resistant to false negative noises. However, the prediction
performance decreases significantly when the dataset contains
20%-35% of both FP and FN noises.
Second, we propose an algorithm to detect and eliminate noises in
the defect data to address the noisy data problem. We
experimentally evaluate our algorithm and the results show that it
can identify noisy instances with reasonable accuracy. In addition,
after eliminating the noises using our algorithm, the defect
prediction accuracy is improved.

Overall, this paper makes the following contributions:
• Noise resistance measuring technique: We propose a

method to measure noise resistance of defect prediction
models.

• Empirical study of measuring noise resistance: We apply
the resistance measuring method for two well-known
prediction algorithms, and provide guidelines for acceptable
noise level.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21-28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0445-0/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

481

• Noise detection technique: We propose an accurate noise
detection algorithm, which also improves defect prediction
accuracy.

In the remainder of the paper, we start by presenting the
background on defect prediction algorithms in Section 2. In
Section 3, we discuss the noisy defect data issue. We propose a
noise resistance measuring method in Section 4 and apply it for
change classification and buggy file prediction in Section 5. We
present our noise detection algorithm in Section 6. Section 7
discusses the threats to validity. We round off the paper with
related work in Section 8 and conclusions in Section 9.

2. BACKGROUND
2.1 A General Defect Prediction Process
Before measuring noise resistance of defect prediction algorithms,
we describe a common defect prediction process as shown in
Figure 1. Then we introduce two well-known defect prediction
algorithms used in this paper.

Instances
(TRUE)

Training
instances

Machine
Learner

instance

Prediction
TRUE or
FALSE

instances
(FALSE)

features

Features

Software
Archives

(1) Labeling
(TRUE or FALSE)

(2) Feature
extraction

(3) Creating
a training corpus

(4) Building
a prediction model

(5) Prediction &
evaluation

Figure 1. A general defect prediction process
Before designing a prediction model, we need to specify the
prediction target. A prediction model can be used for predicting
defect-proneness (buggy or clean) of different software entities,
such as a component [18, 32], file [16, 19, 33] or a change [9, 11].
After deciding the prediction target, a general defect prediction
process (Figure 1) can be as follows:
Labeling: Defect data need to be collected for training a
prediction model. This process typically involves extracting
instances (data items) from software archives and labeling them as
TRUE (buggy) or FALSE (clean). However, some recent studies
have discovered that data collected by mining software
repositories often contain noise. Noisy data threaten the validity of
prediction models. We will describe this issue in Section 3.
Extracting features and creating training corpus: This step
extracts features for predicting the labels of instances. Common
features for defect prediction are complexity metrics, keywords,
changes, and structural dependencies. By combining labels and
features of instances, we can create a training corpus to be used by
a machine learner to construct a prediction model.

Building prediction models: Using a training corpus, general
machine learners such as Support Vector Machines (SVM) or
Bayes Net can be used to build a prediction model. The model can
then take a new instance and predict its label, i.e. TRUE or
FALSE.

Evaluation: To evaluate a prediction model, we need a testing
data set besides a training set. We predict the labels of instances in
the testing set and evaluate the prediction model by comparing the
prediction and real labels. To separate the training and testing sets,
10-fold cross-validation is widely used.

1 2 3 4 5 6 7 8 9 10

testing
set training set

Figure 2. 10-fold cross-validation
In 10-fold cross-validation, the data is divided equally into 10
folds as shown in Figure 2. Then the instances in each fold are in
turn used as a testing set and the remaining nine folds are used to
train the model. For example, in the first iteration, instances in
fold2 to fold10 are used as a training set, and fold1 as a testing set.

There are four possible outcomes from a prediction model:
classifying a buggy instance as buggy (

€

nb→b), classifying a buggy
instance as clean (

€

nb→c), classifying a clean instance as clean
(

€

nc→c), and classifying a clean instance as buggy (

€

nc→b). The
recall, precision, and F-measures are widely used to evaluate
prediction results [27, 31]. We use these measures to evaluate
prediction models as follows:
• Precision (buggy) =

€

nb→b

nb→b + nc→b

This is the number of correct classifications of the type
(

€

nb→b) over the total number of predicted buggy instances.
• Recall (buggy) =

€

nb→b

nb→b + nb→c

This is the number of correct classifications of the type
(

€

nb→b) over the total number of actual buggy instances.
• F-measure (buggy) =

€

2* P(b) * R(b)
P(b) + R(b)

This is a composite measure of precision and recall. We use
the F1 metric that weights recall and precision equally [27].

2.2 Software Defect Prediction Algorithms
In this section, we describe two well-known defect prediction
models used to measure noise resistance.

2.2.1 Predicting Buggy Changes
Change Classification (CC) learns buggy change patterns from
history, and predicts if a new change introduces bugs or not
[9,11].

File at
Rev 3

File at
Rev 1

File at
Rev 2

File at
Rev 4

File at
Rev
n-1

File at
Rev n

File at
Rev n

+1
......

Change log (Rev n)
"Fixed issue #355"

Bug introducing change Fix change ?
Figure 3. Change history with buggy and fix changes

Suppose we have a change history of a file as shown in Figure 3.
After learning from buggy and clean change patterns from
revision 1 to revision n, CC predicts if the change in revision n+1
introduces bugs.

To learn from history, CC extracts features from each change. To
label changes as buggy or clean changes, first we need to extract
changes from project history. Then we identify fix changes using
change logs. To extract change history, we use Kenyon [3], a
system that extracts source code change histories from SCM
systems such as CVS and Subversion. Kenyon automatically
checks out the source code of each revision and extracts change

482

information such as the change log, author, change date, source
code, and change deltas.

Once a commit has been determined to contain a fix, it is possible
to trace backward in the revision history to determine when the
fixed erroneous code is introduced in the system. We define that
as a bug-introducing change. The bug-introducing change
identification algorithms proposed by Śliwerski et al. [23] and
Kim et al. [11] are used.

A file change involves two source code revisions (an old revision
and a new revision) and a change delta that records the added
code (added delta) and the deleted code (deleted delta) between
the two revisions. A file change has associated metadata,
including the change log, author, and commit date. By mining
change histories, we can derive features such as co-change counts
to indicate how many files are changed together in a commit, the
number of authors of a file, and the previous change count of a
file. Every term in the source code, change delta, and change log
texts is used as features. Detailed feature extraction methods of
CC can be found in [11].

2.2.2 Predicting Buggy Files
Another common defect prediction model is identifying buggy
files in advance. It is widely believed that some internal properties
of software (e.g., metrics) have relationships with external
properties (e.g., defects). In recent years, many defect prediction
models based on software metrics have been proposed (e.g., [13,
16, 18, 19, 33]). These prediction models identify code features
(expressed as measurement data), learn a classification model
from historical defect data, and use the constructed model to
predict defect-proneness of a new program module.

Many code features can be extracted from software projects to
predict defective files. These features include complexity metrics
(such as lines of code, cyclomatic complexity, number of classes,
etc.), process metrics (such as the number of lines of code changes,
the number of file changes, etc.) and resource metrics (such as
developer information, etc). All these metrics, or a combination of
these metrics, can be used to build effective software defect
prediction models.

3. NOISES IN DEFECT DATA
Both prediction algorithms described in Section 2 require labels
(buggy or clean) to build and evaluate models. In this section, we
discuss typical techniques to identify labels and the noise in the
labels.

To label a file/change as buggy or clean, many researchers mine
the bug database and version achieves for open source systems.
Two approaches are widely used: searching for keywords such as
"Fixed" or "Bug" [14] and searching for references to bug reports
like “#42233” [23] . We use both techniques in our experiments.
Chen et al. [5] studied open source change log quality. They
checked the correctness of each change log and found almost all
logs were correct.
Some open source projects have strong guidelines for writing their
change logs. For example, 100% of Columba’s change logs used
in our experiment have a tag such as ‘[bug]’, ‘[intern]’, ‘[feature]’,
and ‘[ui]’. Usually, Eclipse developers leave relevant bug report
IDs in their change logs.

However, some recent studies (such as those reported by Bird et al.
[4]) discovered that data collected via mining software

repositories (MSR) often contain noise. They found that the
number of linked bugs (bugs whose change logs and bug reports
are linked) does not match the number of total fixed bugs (the
ratio could be even lower than 50%), suggesting a high percentage
of false negatives in the defect dataset. This is because developers
often do not write specific keywords or leave links for fix
revisions. It is also possible that developers make mistakes when
they write keywords or links in the change logs. For this reason,
automatically collected defect data based on these keywords or
links are inevitably noisy. Recent studies have also found that
noisy data (in training and testing sets) affect performance of
prediction models [4].

We also performed a replication study of Bird et al.’s experiments.
Our results confirm their findings about noisy defect data. For
example, for the Eclipse SWT component, there are 32% unlinked
bugs (bugs that do not reflected in CVS logs) in Eclipse 3.0 and
21% unlinked bugs in Eclipse 3.1. The existence of the unlinked
bugs indicates that the defect data collected via MSR is noisy. We
also noticed that the noise level decreased in Eclipse 3.4, where
92.27% SWT bugs are recorded in CVS logs. In this paper, we
measure the effect of noise on two defect prediction models
described in Section 2, and propose an algorithm to detect the
noise in Section 6.

4. EXPERIMENTAL SETUP

4.1 Research Questions
Our experiments are designed to address the following research
questions:
RQ1: How resistant a defect prediction model is to false negative
(FN) buggy data?

RQ2: How resistant a defect prediction model is to false positive
(FP) buggy data?

RQ3: How resistant a defect prediction model is to both false
negative (FN) and false positive (FP) buggy data?

As Bird et al. [4] found out, developers often forget to leave
explicit messages or links to indicate buggy changes. Since most
automatic buggy change/file identifications are based on special
keywords and links [11, 16, 28, 33, 36] in the change logs, this
will lead to false negatives (missing some buggy changes) in the
automatically identified data. RQ1 measures predictor resistance
for this case.

On the other hand, it is possible that developers label a change/file
as buggy by leaving special keywords and bug report links,
together with some non bug-fix changes in one commit. This
behavior leads to false positives (identifying non-buggy
changes/files as buggy). RQ2 measures resistance of defect
prediction models to false positives in the training data set.

Finally, RQ3 measures the noise resistant ability of defect
prediction models when data has both false positives and false
negatives.

4.2 Making Noisy Data
To address the research questions, we first need a golden set,
which contains no FPs and FNs. In addition, we need noisy data
sets. However, it is very hard to get a golden set. In our approach,
we carefully select high quality datasets and assume them the
golden sets. Then, to create noise sets, we add FPs and FNs
intentionally into the golden sets. To add FPs and FNs, we

483

randomly selects instances in a golden set and artificially change
their labels from buggy to clean or from clean to buggy, inspired
by experiments in [4].

testing setoriginal training set

X X X X X X X X X X X X
X

X

X: buggy labelled
instance

Biased training set: false negative instances

X X X X X

1

Adding
buggy labels

2

Removing
buggy labels

Biased training set: false positive instances

X X X X X X X X X XX
XX X

X X X XXX X

Figure 4. Creating biased training set

To make FN data sets (for RQ1), we randomly select n% buggy
labeled instances and change their labels to clean, as shown in
Figure 4 (1). Similarly, to make FP data sets (for RQ2), we select
n% of clean labeled instances and change their labels to buggy,
which adds false buggy changes, as shown in Figure 4 (2). For the
FN and FP data sets (for RQ3), we select random n% of instances,
and change their labels. For example, if a clean-labeled instance is
selected, we change its label to buggy. If a buggy instance is
selected, we change its label to clean.

It is very important to note that we add noise only in the training
set, not in the testing set. For testing, we use the original golden
set. In this way, we can measure the accuracy of a defect
prediction model, which is trained from noisy data sets, to predict
buggy/clean changes in the golden set.

In this paper, we use the 10-fold cross validation described in
Section 2. First, we group 9 folds to be used as a training set.
Then, we add noise only in the training set and leave the testing
set unchanged.
For the machine learner, we use the Bayes Net classifier (the
Weka implementation [26]). Bayesian networks have good
performance when dealing with a large number of variables with
much variance in values [27]. We also compare performances of
other machine learners in Section 5.3.2.

4.3 Dummy Predictor
An effective defect prediction model should outperform at least
random guessing – guessing a change/file as buggy or clean
purely at random. We call a predictor based on random guessing a
dummy predictor. Since there are only two labels, buggy and
clean changes, the dummy predictor could also achieve certain
prediction accuracy. For example, if there are 30% buggy changes
in a project, by predicting all changes as buggy, the buggy recall
would be 1 and the precision would be 0.3. It is also possible that
the dummy predictor randomly predicts a change as buggy or
clean with 0.5 probability. In this case, the buggy recall would be
0.5, but still the precision is 0.3.

We use the F-measure of the dummy predictor as a reference line
when measuring the noise resistance of defect prediction models.
We compute the dummy F-measure assuming the dummy

predictor randomly predicts 50% as buggy and 50% as clean. For
example, for a project with 30% buggy changes, the dummy
buggy F-measure is 0.375

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

×
×

30.05.0
30.05.02 .

5. NOISE RESISTANCE
This section reports our experiments on the impact of noise on
two defect prediction algorithms and discusses the results.

5.1 Noise Resistance of Change Classification
5.1.1 Subject Programs
We use Columba, Eclipse JDT.Core and Scarab as our subjects
for this experiment (Table 1), as these projects have high quality
change logs and links between changes logs and bug reports. For
the first two projects, we adopt the exact datasets used in [11],
which were also used by other researchers [2, 21]. We assume
these datasets as golden sets and use them to measure noise
resistance.

5.1.2 Original Accuracy
First, we build a CC prediction model using the original training
set and measure the performance of the model using a testing set.
Figure 5 shows the buggy recall, prediction and F-measure.
Overall, the accuracy results for the first two projects are
comparable to those reported in [11] (the small variations in
results coming from the use of Bayes Net instead of SVM and the
randomness in the 10-fold cross-validation.) For Columba, the
buggy precision and recall are around 0.5 to 0.55. For Eclipse, the
buggy recall is 0.88, and precision is 0.48. We notice that the
precision for Eclipse reported in [11] is 0.61, which is higher than
our precision, 0.48. However, our recall is 0.88, which is much
higher than the recall 0.61 reported in [11]. This happens due to
the recall-precision tradeoff. To address this issue, we use F-
measure [26] to measure the noise resistance of CC in this paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Buggy Precision

Buggy Recall

Buggy F-measure

Scarab

Columba

Eclipse

Figure 5. Defect prediction using the original training set

Table 1. Analyzed subject programs for predicting buggy changes

Project Revisions Period # of clean
instances

of buggy
instances

% of buggy
instances

of features

Columba 500-1000 05/2003-09/2003 1,270 530 29.4 17,411
Eclipse 500-750 10/2001-11/2001 592 67 10.1 16,192
Scarab 500-1000 06/2001-08/2001 724 366 50.6 5,710

484

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

!"
##
$%
&'
(
)*
+"
,)

-*.%/,*0101#%+)2%3*4+)%1)#*56)%-&7.%,*2)

Columba

Eclipse

Scarab

Dummy for Eclipse

Dummy for Columba

Dummy for Scarab

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

!"
##
$%
&'
(
)*
+"
,)

-./%0,*1212#%+)3%4*5+)%67+189)%-&:/%,*3)

Columba

Eclipse

Scarab

Dummy for Columba

Dummy for Eclipse

Dummy for Scarab

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

!"
##
$%
&'
(
)*
+"
,)

-./%0,*1212#%+)3%4*5+)%2)#*67)%-&8/%9%4*5+)%:;+167)%-&</%,*3)

Columba

Eclipse

Scarab

Dummy for Columba

Dummy for Eclipse

Dummy for Scarab

5.1.3 FN Resistance (RQ1)
In this section, we measure the resistance of CC for false negative
(FN) training sets. To add FNs, we randomly select buggy
instances in the training set and label them as clean as shown in
Figure 4 (1). In this way, we increase the rate of FN by changing
buggy labels to clean. For example, suppose we have 100 buggy
instances in a training set. Changing labels of 10 buggy instances
to clean will add 10% FN.

Figure 6 (a) shows buggy F-measure results for Columba, Eclipse
and Scarab with various FN training sets. The x-axis indicates the
FN rates. The dummy F-measures described in Section 4.3 are
also shown in the Figures as the reference lines.
For Columba, the buggy F-measure shows strong resistance
against the FN training sets. The F-measure values are relatively
stable. When the noises reach 60%, the F-measure just drops 0.05.
The same can be observed for Scarab, the buggy F-measure is not
affected by FN noises significantly. After 20% false negatives are
injected into the training set, the F-measure is not changed. When
the noises reach 60%, the F-measure only drops less than 0.05.

For Eclipse, the buggy F-measure is just slightly affected by the
FN training sets too. After adding 40% FN noises to the training
set, the F-measure drops from 0.62 to 0.55. When the noises reach
60%, the F-measure still remains at 0.50.

A possible explanation of these results is that the features
characterizing bugs are often common across the buggy changes.
Therefore losing some instances in the training set does not lead
to significant performance decrease.

5.1.4 FP Resistance (RQ2)
We also observe CC F-measures using FP training sets. We add
FPs into the training sets as described in Figure 4 (2) and then

perform change classifications. The results are shown in Figure 6
(b).

For Columba and Scarab, the buggy F-measures are not
significantly affected by the false positives. For Eclipse, buggy F-
measures are affected by the FN training sets. After adding 20%
FP noises to the training set, the F-measure drops from 0.6 to 0.4.
After having more than 50% FP noises, the F-measure is close to
that of the dummy predictor.

A possible explanation of the sensitivity of the Eclipse F-
measures is the small number of buggy changes in the dataset.
There are only 67 buggy changes as shown in Table 1. After
adding many FPs, the features that characterize bugs become less
obvious for classifiers to learn. On the other hand, Columba and
Scarab all have more than 300 buggy changes to learn from, the
features characterizing bugs can be still identified and prediction
performance is still kept.

5.1.5 FN and FP Resistance (RQ3)
We also examine the prediction performance when the training
sets contain both FP and FN noises. As shown in Figure 6 (c), the
trend of buggy F-measures for all projects decline when the noise
rate increases.

For Columba and Scarab, their F-measures only decrease by 0.1-
0.15 when noise level reaches 60%. Interestingly, the F-measure
of Eclipse decreases much faster than that of Columba and Scarab.
Note that, Columba and Scarab have many buggy/clean instances
and switching some labels dose not hurt the prediction too much.
However, the F-measure of Eclipse significantly drops when the
level of FP and FN noise increases. After the noises reach 40%,
the Eclipse’s F-measures are almost the same as the dummy F-
measures.

Figure 6. The impact of noises on predicting
buggy changes (a). F-measure for FN training
sets; (b). F-measure for FP training sets; (c). F-
measure for FN&FP training sets. The Bayes
Net machine learner is used. For Columba and
Scarab, the F-measures are not affected by the
noises significantly. For Eclipse, the F-measure
drops significantly when the noise rate
increases.

485

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

!"
##
$%
&'
(
)*
+"
,)
%

-*.%/,*0101#%+)2%3*4+)%1)#*56)%-&7.%,*2)%

Debug

SWT

Dummy for Debug

Dummy for SWT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

!"
##
$%
&'
(
)*
+"
,)
%

-./%0,*1212#%+)3%4*5+)%67+189)%-&:/%,*3)%

Debug

SWT

Dummy for Debug

Dummy for SWT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

!"
##
$%
&'
(
)*
+"
,)
%

-./%0,*1212#%+)3%4*5+)%2)#*67)%-&8/%9%4*5+)%:;+167)%-&</%,*3)%

Debug

SWT

Dummy for Debug

Dummy for SWT

5.2 Buggy File Prediction
5.2.1 Subject Programs
To obtain the “golden set” for building prediction models for
buggy-files, we use the SWT and Debug projects in Eclipse 3.4.
We collected the defect data by mining the Eclipse Bugzilla and
CVS repositories. We find that both projects have a high
percentage of linked bugs (bugs whose changes logs and bug
reports are linked). For SWT, 92.27% bugs reported in Bugzilla
are linked to changes. For Debug, 95.92% bugs are linked.
Therefore, we use these two datasets as the golden sets.

Table 2 summarizes the datasets used in this study. The SWT
dataset contains 1,485 Java source files, among which 43.9% files
are defective. The Debug dataset contains 1,065 files, among
which 24.69% are defective. We have also collected the following
metrics for each file in the projects. These metrics capture
different aspects of a file and are used as features for constructing
our defect prediction model:

• Complexity metrics: including LOC (lines of code), average
cyclomatic complexity measure, maximum cyclomatic
complexity measure.

• Object-oriented metrics: including the WMC, CBO, NOC,
DIT, LCOM, RFC metrics that are proposed by Chidamber
and Kemerer [6].

• Change metrics: including the number of added and deleted
lines of code since the last major revision, the number of
times the file is changed.

• Developer metric: the number of developers who changed
the file.

Following the method described in Section 4.2, we intentionally
make the dataset noisy by randomly selecting a given percentage
of instances and changing their class labels (buggy or clean), thus
artificially creating false positives and false negatives. We again
use 10-fold cross validation to evaluate the prediction results. We
first randomly partition the whole dataset into 10 folds. We use 9
folds as a training set and inject noise into them, and then use the
remaining unchanged 1 fold as the testing set. The Bayes Net
classifier is used to construct the prediction model.

Table 2. The dataset used for predicting buggy files
Project LOC #programs

(src files)
#defects #defective

programs
% of linked
bugs

SWT 386K 1485 556 653(43.97%) 92.27%
Debug 77K 1065 294 263(24.69%) 95.92%

5.2.2 FN Resistance (RQ1)
Figure 7(a) shows how FN (false negative) training sets affect
prediction performance. Clearly, the defect prediction model has
strong resistance against the FN training sets. For SWT, the buggy
f-measure using the original dataset is 0.79. With the increases of
noises, the prediction results are still very stable (with f-measures
around 0.78), even when the false negative rate reaches 60%.
Similar results are found for the Debug project, which exhibits
stable performance until the FN rate reaches 50%. Although some
buggy instances are marked as clean, the remaining buggy
instances can capture the program features and can be still used
for training prediction models effectively.

5.2.3 FP Resistance (RQ2)
Figure 7(b) shows how FP (false positive) training sets affect
prediction performance. Similarly, the defect prediction model has

Figure 7. The impact of noises on predicting
buggy files (a). F-measure for FN training sets;
(b). F-measure for FP training sets; (c). F-
measure for FN&FP training sets. The Bayes
Net machine learner is used. The F-measures of
the Debug and SWT projects are not affected by
the FN or FP noises significantly. However,
when FN&FP noises reach certain level, the F-
measures drop significantly.

486

resistance against the FP training sets. The prediction results are
very stable. For SWT, the F-measure values are all around 0.78
even the FP rate is 60%. For Debug, the F-measures are about
0.50 until the FP rate reaches 50%. The data noise introduced by
false positives does not decrease the prediction accuracy
significantly.

5.2.4 FN and FP Resistance (RQ3)
A training set may contain both false positives and false negatives.
Figure 7(c) shows how FN and FP noises affect prediction
accuracy. For SWT, once the FN and FP noise rate reaches 40%,
prediction accuracy starts decreasing quickly. For Debug,
prediction accuracy drops after the FN and FP noise rate exceeds
20%. These results show that FN and FP noises together have
larger impact on defect prediction.

5.3 Discussions
5.3.1 Acceptable Noise Rate
Many bug prediction approaches use software history to build
prediction models. It is often very difficult to collect perfect
historical datasets that have no FPs and FNs. How much noise is
acceptable for prediction approaches?

Our experiments show that CC and the buggy file prediction yield
reasonably stable accuracy at the presence of noises, when the
Bayes Net learner is used. When the number of buggy instances is
large enough, increasing FP or FN noises does not affect
prediction performance significantly. For datasets with both FP
and FN noises, the prediction performance decreases when the
noises increase. When the number of buggy instances in a dataset
is small, the prediction performance will be affected by noises
significantly.
In defect prediction practices, FNs are more common as some
defects recorded in bug tracking systems are not linked to
CVS/SVN logs [4]. FPs happen when developers leave a message
saying he fixed a bug, but he actually did not. Chen et al. [5]
studied the correctness of open source change logs, and they find
that when developers leave a message indicating fixing of bugs, it
is likely a real fix. Our experimental results show that noises in
FN or FP alone do not affect prediction performance significantly.
Also, up to 20%-35% of FP and FN noises (together) usually do
not affect the performance significantly either.

Obviously, our results may not be generalizable to all prediction
models, but at least these can serve as guidelines for CC and the
buggy file prediction users. We suggest that before using these
predictors, users can sample their data and manually inspect them
to measure FP and FN rates. Based on the rates, they can decide if
their defect data is applicable for these predictors.

5.3.2 Noise Resistances of Different Machine
Learners
In previous sections, we obtained our results using the Bayes Net
machine learner. In this section, we use Naïve Bayes, Support
Vector Machines (SVM) and Bagging learners [26, 27] to repeat
the experiments and observe the impact of data noises on
prediction accuracy.

Figure 8 shows the noise resistance ability of the four machine
learners under different False Negative rates. Similar to Bayes Net,
the Naïve Bayes learner also has strong noise resistance ability
when predicting buggy files. The F-measures do not change
significantly when FN rates are increasing. All Bayesian

classifiers are based on the Bayer’s rule. The classifier is
interested in the most probable hypothesis. Therefore, even if
there is a certain amount of noise in the defect dataset, which
could affect calculation of probability for some hypothesis, the
Bayesian classifiers can still make correct classifications when the
most probable hypothesis is preserved.
The SVM learner performs poorly with noisy data – F-measures
decrease quickly when FNs increase, until FN rate reaches 50%.
SVM performs classification by constructing an N-dimensional
hyperplane that optimally separates the data into two categories.
The noise in the data could affect the construction of the
hyperplane considerably. Therefore more noise could lead to more
bias in classification.

The Bagging (Bootstrap Aggregating) classifier is a machine
learning algorithm that ensembles meta-algorithms to build
models. In this experiment, we use the Multilayer Perceptron
algorithm as the meta-algorithm [26]. The Bagging classifier
separates a training set into several new training sets by random
sampling, and builds models based on the new training sets. The
final classification result is obtained by the voting of each model.
Figure 8 shows that Bagging can improve the original prediction
performance, and resist a certain amount of noises. However,
when the noise level exceeds 40%, the probability of each model
making a wrong classification is increasing, causing the quick
drop of the performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

!"
##
$%
&'
(
)*
+"
,)
%

-,*././#%+)0%1*2+)%/)#*34)%5&67%,*0)%

Bayes Net

Na ve Bayes

SVM

Bagging

Figure 8. SWT defect prediction results of different machine

learners (F-measures for FN training set).

6. HANDLING NOISES IN DEFECT DATA
This section proposes a noise detection algorithm and presents its
evaluation.

6.1 Identifying Noisy Instances
We investigate possible methods for identifying noisy instances in
defect datasets. If we can detect noises in advance, it is possible to
eliminate them and make the data more suitable for predictors.

We propose a novel noise detection algorithm, called Closest List
Noise Identification (CLNI). The pseudo-code of the algorithm is
given in Figure 9.
The CLNI algorithm works as follows. In each iteration j, for each
instance Insti, its closest instances are listed; we call it Listi. In
Listi, the instances are sorted in ascending order according to their
Euclidean Distance to Insti. The percentage of top N instances that
have different class values from Insti is recorded as θ. If θ is more

487

than or equal to a given threshold δ, then Insti is highly probable
to be a noisy instance and will be included in noise set Aj. The
above process is repeated until the similarity between Aj and Aj-1 is
over ε. Aj will be returned as the identified noise set. Empirical
study found that when N is 5, δ is 0.6 and ε is 0.99, this algorithm
performs the best.

CLNI Algorithm:
for each iteration j

for each instance Insti
for each instance Instk

 if(Instk ∈ Aj-1)
 continue;

else
 add EuclideanDistance(Insti, Instk) to Listi ;
 end
 end
 calculate percentage of top N instances in Listi
 whose label is different from Insti as θ;
 if θ ≥ δ
 Aj = Aj ∪ Insti;
 end
 end
 if |Aj∩Aj-1| / Max(|Aj|, |Aj-1|)≥ ε
 break;
 end
end
return Aj

Figure 9. The pseudo-code of the CLNI algorithm
The high-level idea of CLNI can be illustrated as in Figure 10.
The blue points represent clean instances and the white points
represent buggy instances. When checking if an instance I is
noisy, CLNI first lists all instances that are close to I (the points
included in the circle). CLNI then calculates the ratio of instances
in the list that have a class label different from that of I (the
number of white points over the total number of points in the
circle). If the ratio reaches a specific threshold δ, we consider
instance I to have a high probability to be a noisy instance.

Figure 10. An illustration of the CLNI algorithm

6.2 Evaluation
We evaluate CLNI using data from the Eclipse 3.4 SWT and
Debug projects as described in Section 5.2. These two datasets are
considered as the golden sets as most of their bugs are linked bugs.
Following the method described in Section 4.2, we create the
noisy datasets for these two projects by selecting random n% of
instances and artificially changing their labels (from buggy to
clean and from clean to buggy). We then apply the CLNI

algorithm to detect noisy instances that we have just injected. We
use Precision, Recall and F-measures to evaluate the performance
in identifying the noisy instances.

Table 3 shows the results when the noise rate is 20%. The
Precisions are above 0.6, Recalls are above 0.83 and F-measures
are above 0.71. These promising results confirm that the proposed
CLNI algorithm is capable of identifying noisy instances.

Table 3.The performance of CLNI in identifying noisy
instances

 Precision Recall F-measure
Debug 0.681 0.871 0.764
SWT 0.624 0.830 0.712

Figure 11 also shows the performance of CLNI under different
noise levels for the SWT component. When the noise rate is
below 25%, F-measures increase with the increase of the noise
rates. When the noise rate is above 35%, CLNI will have bias
toward incorrect instances, causing F-measures to decrease.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Noise Rate

Precision

Recall

F-measure

Figure 11. Performance of CLNI with different noise rates

After identifying the noises in the noisy Eclipse 3.4 SWT and
Debug datasets using CLNI, we eliminate these noises by flipping
their labels. We then evaluate if the noise-removed training set
improves prediction accuracy.
The results for the SWT component before and after removing FN
and FP noises are shown in Table 4. In general, after removing the
noises, the prediction performance (F-measure) improves for all
learners, especially for those that do not have strong noise
resistance ability. For example, for the SVM learner, when 30%
FN&FP noises were injected into the SWT dataset the F-measure
was 0.339. After identifying and removing the noises, the F-
measure jumped to 0.706. These results confirm that the proposed
CLNI algorithm can improve defect prediction performance for
noisy datasets.

Table 4.The defect prediction performance (F-measure)
after identifying and removing noisy instances (SWT)
Remove
Noises ?

Noise
Rate

Bayes
Net

Naïve
Bayes SVM Bagging

No 15% 0.781 0.305 0.594 0.841
30% 0.777 0.308 0.339 0.781
45% 0.249 0.374 0.353 0.350

Yes

15% 0.793 0.429 0.797 0.838
30% 0.802 0.364 0.706 0.803
45% 0.762 0.418 0.235 0.505

I

488

7. THREATS TO VALIDITY
We note some threats to the validity of this work.

• All datasets used in our experiments are collected from open
source projects. The types of noises introduced by open
source developers may be different from those introduced by
employees in a well-managed software organization. We
need to evaluate if commercial projects also exhibit similar
noise resistance behavior in defect prediction. This remains
as future work.

• The golden set used in this paper may not be perfect. For
example, there are still a few percentages of bugs that are not
linked to the CVS logs. Even though some files are annotated
with bug IDs, they may not be the files that actually contain
the bugs. It is also possible that a few bugs may not even be
recorded in the bug tracking system. Our results may be
under threat if the golden sets contain a large number of FPs
and FNs.

• The noisy data simulations used in our experiment may not
reflect the actual noise patterns in practice. In our
experiments, instances to be included as FP/FN training sets
are randomly selected. It is possible that in practice,
occurrences of some noises actually follow certain patterns;
for example, files developed by a poorly managed team are
more likely to contain noisy defect data.

8. RELATED WORK

8.1 The Data Quality Problem
Real-world data are often noisy, which may affect interpretations
and models derived from the data. The data quality problem is
well recognized in the data mining area. Some studies show that
errors in a large dataset are common and field error rates are
typically around 5% or more [29, 12]. Many existing learning
algorithms have integrated various approaches to handle noises.
For example, the well-known Decision Tree algorithm uses tree-
pruning methods to avoid over fitting problems introduced by
noises in training data [20]. Zhu and Wu [30] descried a
quantitative study of the impact of noisy data on classification
accuracies using the UCI machine learning datasets. They found
that although some machine learning algorithms have been
designed to accommodate noises, noises in class labels can still
lower classification accuracies. They also suggest preprocessing
methods (such as eliminating instances containing class noise) to
enhance classification accuracy.

The data quality problem has also been observed by some
software engineering researchers. For example, Mockus [15]
noted that in many realistic scenarios the data quality is low (e.g.,
some change data could be missing), which could affect the
outcome of an empirical study. He proposed to use multiple
imputation methods to mitigate the effects of missing values.
Myrtveit et al. [17] and Strike et al. [22] also noticed the problem
of missing and incomplete data in software effort estimation. In
this paper, we address the problem of noisy data in software
defect prediction.

8.2 The Quality of Software Defect Data
Research on software defect prediction has received much
attention in recent years, as the ability to predict defect-proneness
of a software module is important for software quality
improvement and project management. Many defect prediction

models have been proposed (e.g., [7, 10, 11, 13, 16, 17, 35]).
However, almost all defect prediction models do not take noise in
the data into consideration.

As described in Section 3, many current defect prediction models
are built based on data collected by mining software repositories
(MSR). Bird et al. [4] reported that the data collected in this
manner could introduce a large amount of noises. Although they
have noticed the noisy defect data problem, they did not
empirically measure the impact of different noise levels on defect
prediction accuracy or try to eliminate noise. The noisy data
problem does not pertain to data collected by MSR only. It may
occur in industrial metric projects as well. For example,
Khoshgoftaar and Seliya [8] performed an extensive study on
NASA MDP datasets. They observed low prediction performance
and suggested that “instead of focusing on searching for another
classification technique for improving prediction accuracy, the
quality of the software measurement data should be addressed”.
They also proposed a noise elimination technique based on the k-
means algorithm [25]. They detected outliers in the data and
treated them as noisy instances. The limitation of their method is
that mislabeled instances are often not outliers. In this paper, we
present one of the first empirical studies of the impact of noisy
data on defect prediction. We also propose a novel noise detection
algorithm, which can identify mislabeled instances with good
accuracy.

9. CONCLUSIONS
Defect data collected based on specific bug fix keywords or bug
report links in change logs are commonly used to build defect
prediction models and to evaluate the models. Since leaving
specific keywords or bug report links in change logs is optional,
automatically collected defect data from change logs inevitably
includes noise. Recent studies show that noise in defect data is not
negligible, and this noise affects prediction performance [4].
However, the issue of dealing with noisy data has not been
addressed adequately.

In this paper, we have introduced a method to measure noise
resistance in software defect prediction (for predicting buggy files
and buggy changes). By applying the method to two well-known
defect prediction models, we found that in general, noises in the
defect data do not affect defect prediction performance in a
significant manner. However, the prediction performance
decreases significantly when the dataset contains 20%-35% of
both FPs and FNs.

We have also proposed a new method called CLNI for identifying
noisy instances in defect data. Our experiment results show that
CLNI can effectively identify noises with reasonable accuracy.
The noise-eliminated training sets produced by CLNI can improve
the defect prediction performance, especially for the machine
learners that do not have strong noise resistant ability.

In future, we will further investigate techniques for improving
defect prediction accuracy under noisy environment. We will also
explore if the results obtained in this paper are applicable to
industrial projects.

All data used in our experiments are available at:
http://code.google.com/p/hunkim/wiki/HandlingNoise

ACKNOWLEDGEMENTS
This research is supported by the Chinese NSF grant 61073006
and the 2010 Microsoft SEIF Awards.

489

REFERENCES
[1] J. Aranda and G. Venolia, The secret life of bugs: Going

past the errors and omissions in software repositories. Proc.
ICSE’09, Vancouver, Canada, May 2009, 298-308.

[2] L. Aversano, L. Cerulo, and C. Del Grosso, Learning from
bug-introducing changes to prevent fault prone code. In
Ninth International Workshop on Principles of Software
Evolution (IWPSE'07). Dubrovnik, Croatia, Sep 2007.

[3] J. Bevan, E. Whitehead Jr., S Kim and M. Godfrey,
Facilitating Software Evolution with Kenyon, Proc.
ESEC/FSE’05, Lisbon, Portugal, 2005, 177-186.

[4] C. Bird, A. Bachmann, E.Aune, J. Duffy, A. Bernstein,
V.Filkov, and P. Devanbu, Fair and balanced?: bias in bug-
fix datasets. Proc. ESEC/FSE '09, August 2009, 121-130.

[5] K. Chen, S. R. Schach, L. Yu, J. Offutt and G. Z. Heller,
Open-Source Change Logs, Empirical Software
Engineering, vol. 9, September 2004, 197 – 210.

[6] S.R. Chidamber and C.F. Kemerer, A Metrics Suite for
Object-Oriented Design, IEEE Trans. Software Eng., vol.
20, 476-493, 1994.

[7] A. E. Hassan, Predicting Faults Using the Complexity of
Code Changes, Proc. ICSE’09, Vancouver, Canada, May
2009.

[8] T.M. Khoshgoftaar and N. Seliya, The Necessity of
Assuring Quality in Software Measurement Data, Proc.10th
Int’l Symp. Software Metrics (METRICS’04),119-130, 2004.

[9] S. Kim, T. Zimmermann, K. Pan and E. Whitehead Jr.,
Automatic Identification of Bug-Introducing Changes, Proc.
ASE’06, Tokyo, Japan, September 2006.

[10] S. Kim, T. Zimmermann, E. Whitehead Jr., A. Zeller,
Predicting Faults from Cached History, Proc. ICSE’07,
Minneapolis, USA, 2007

[11] S. Kim, E. Whitehead Jr. and Y. Zhang, Classifying
Software Changes: Clean or Buggy?, IEEE Trans. of
Software Engineering vol. 34, 181-196, March/April 2008.

[12] J. Maletic and A. Marcus, Data Cleansing: Beyond Integrity
Analysis. Proc. the Conference on Information Quality
(IQ2000), 2000.

[13] T. Menzies, J. Greenwald and A. Frank, Data Mining Static
Code Attributes to Learn Defect Predictors, IEEE Trans.
Software Engineering, 32(11), 1-12, 2007.

[14] A. Mockus and L. G. Votta, Identifying Reasons for
Software Changes Using Historic Databases, Proc. 16th
International Conference on Software Maintenance (ICSM
2000), San Jose, CA, USA, 2000, 120-130.

[15] A. Mockus. Missing Data in Software Engineering. In
F.Shull et al. (eds.), Guide to Advanced Empirical Software
Engineering, 185-200, 2008.

[16] R. Moser, W. Pedrycz and G. Succi, A Comparative
Analysis of the Efficiency of Change Metrics and Static
Code Attributes for Defect Prediction, Proc. ICSE’08,
Leipzig, Germany, May 2008.

[17] I. Myrtveit, E. Stensrud, and U. H. Olsson. Analyzing Data
Sets with Missing Data: An Empirical Evaluation of
Imputation Methods and Likelihood-Based Methods. IEEE

Trans. on Software Engineering, 27(11), 999-1013, 2001.

[18] N. Nagappan, T. Ball,and A. Zeller, Mining Metrics to
Predict Component Failures, Proc. ICSE’06, Shanghai,
China, May 2006.

[19] T. Ostrand, E. Weyuker and R. Bell, Predicting the Location
and Number of Faults in Large Software Systems, IEEE
Trans. Software Engineering, 31 (4), 340-355, 2005.

[20] J.R. Quinlan, Learning from Noisy Data. Proceedings of the
Second International Machine Learning Workshop,
University of Illinois at Urbana-Champaign, 1983.

[21] S. Shivaji, E. Whitehead Jr., R. Akella and S. Kim,
Reducing Features to Improve Bug Prediction. Proc.
ASE’09, Nov 2009. 600-604.

[22] K. Strike, K. E. Emam, and N. Madhavji. Software Cost
Estimation with Incomplete Data. IEEE Trans. on Software
Engineering, 27(10), 890-908, 2001.

[23] J. Śliwerski, T. Zimmermann and A. Zeller, When Do
Changes Induce Fixes?, in Int'l Workshop on Mining
Software Repositories (MSR 2005), Saint Louis, Missouri,
USA, 2005, 24-28.

[24] J.Spacco, D. Hovemeyer and W. Pugh, Tracking Defect
Warnings Across Versions, in Int'l Workshop on Mining
Software Repositories (MSR 2006), Shanghai, China, 2006.

[25] W. Tang and T.M. Khoshgoftaar, Noise identification with
the k-means algorithm, Proc. 16th IEEE Int’l Conference
on Tools with Artificial Intelligence (ICTAI'04), Nov. 2004.

[26] WEKA: http://www.cs.waikato.ac.nz/ml/weka/

[27] I.H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementation,
second ed., Morgan Kaufmann, 2005.

[28] C. C. Williams and J. K. Hollingsworth, Automatic Mining
of Source Code Repositories to Improve Bug Finding
Techniques, IEEE Trans. Software Engineering, vol. 31, pp.
466-480, 2005.

[29] X. Wu, Knowledge Acquisition from Databases, Ablex
Publishing, 1995.

[30] X. Zhu and X. Wu, Class Noise vs. Attribute Noise: A
Quantitative Study of Their Impacts, Artificial Intelligence
Review 22: 177–210, Kluwer Academic, 2004.

[31] H. Zhang and X. Zhang, Comments on "Data Mining Static
Code Attributes to Learn Defect Predictors", IEEE Trans.
on Software Engineering, 33(9), 635-636, 2007.

[32] H. Zhang, X. Zhang and M. Gu, Predicting Defective
Software Components from Code Complexity Measures,
Proc. of 13th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC 2007), Dec 2007, Australia.

[33] H. Zhang, An Investigation of the Relationships between
Lines of Code and Defects, Proc. ICSM’09, Edmonton,
Canada, September 2009.

[34] T. Zimmermann, R. Premraj and A. Zeller, 2007. Predicting
Defects for Eclipse, Proc. PROMISE’07, Minneapolis,
USA.

[35] T. Zimmermann and N. Nagappan, Predicting Defects using
Network Analysis on Dependency Graphs, Proc. ICSE’08,
Leipzig, Germany, May 2008.

490

