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Abstract—For a large and evolving software system, the project 
team could receive many bug reports over a long period of time. 
It is important to achieve a quantitative understanding of bug-
fixing time. The ability to predict bug-fixing time can help a 
project team better estimate software maintenance efforts and 
better manage software projects. In this paper, we perform an 
empirical study of bug-fixing time for three CA Technologies 
projects. We propose a Markov-based method for predicting the 
number of bugs that will be fixed in future. For a given number 
of defects, we propose a method for estimating the total amount 
of time required to fix them based on the empirical distribution 
of bug-fixing time derived from historical data. For a given bug 
report, we can also construct a classification model to predict 
slow or quick fix (e.g., below or above a time threshold). We 
evaluate our methods using real maintenance data from three CA 
Technologies projects. The results show that the proposed 
methods are effective. 

Index Terms—bugs, bug-fixing time, prediction, effort 
estimation, software mainteannce. 

I. INTRODUCTION 
With the increasing complexity of software systems, the 

task of quality assurance becomes more challenging. Modern 
enterprise software systems are typically composed of multiple 
components, each of which may have had a separate evolution. 
Furthermore, when deployed in the customer's environment, 
there are multiple environments and platforms to consider as 
well as the need for making complex interactions with third 
party systems. Therefore the organizations could receive a 
large number of bug reports over a long period of time. Fixing 
bugs is one of the most frequent software maintenance 
activities, which was estimated to cause 70 billion US dollars 
per year in the United States [17]. 

CA Technologies is a multinational company providing IT 
management software and solutions. Like other organizations, 
CA Technologies is committed to providing outstanding pre- 
and post-sales support for its customers. Bug fixing, as a part of 
software development and maintenance process, is an 
important activity of the company.  

As the number of bugs reported by QA engineers and 
customers could be large, it is important to be able to predict 
the bug-fixing time so that a project team can better estimate 
the bug-fixing efforts and achieve better project management. 
We define the bug fix time as the calendar time from the 
creation of a bug record to the time the bug is resolved as fixed. 

Although each bug is assigned with a severity and a priority, 
we find that we cannot simply predict bug-fixing time based 
merely on bug severity or priority. Bug-fixing time is affected 
by many other factors such as bug owners and bug types. 
Different bugs may require different amount of time to fix. The 
ability to estimate bug-fixing time is important for increasing 
customer satisfaction as well as for project planning. For 
example, a company may have a policy that all high severity 
bugs being fixed and at least P% of low severity bugs being 
fixed before releasing the product, the project team can then 
estimate how long it will take to fix the bugs to be compliant 
with the company’s policy. As another example, if a company 
has standards for responding customer reported issues, the 
project team can estimate if such standards can be met for a 
given bug report. 

In recent years, there has been some research work on 
analyzing and predicting bug-fixing time. For example, Panjer 
[23] proposed to use classification techniques (such as Naïve 
Bayes) to predict the time to fix a bug. They obtained an 
accuracy of 34.9% on the Eclipse bug dataset. Kim et al. [13] 
studied the life span of bugs in ArgoUML and PostgreSQL 
projects, and found that bug-fixing time had a median of about 
200 days. Giger et al. [9] studied three open source projects and 
used Decision Tree to classify fast and slowly fixed bugs. The 
aforementioned work only focuses on one aspect of bug-fixing 
time, and mainly on open source projects. Also, their prediction 
accuracy could be further improved.  

In this paper, we perform a dedicated study on bug-fixing 
time using real data from three commercial projects of CA 
Technologies. We proposed methods for answering the 
following three questions: 
• How many bugs can be fixed? We propose a Markov 

based method for predicting the number of bugs that can 
be fixed within a given time period. The evaluation results 
on three CA projects show that the mean relative error in 
prediction is only 3.72%. 

• How much time is required to fix these bugs? We propose 
a Monte Carlo based method for predicting the total time 
required for fixing a given number of bugs. From the 
historical bug-fixing data, we can learn the empirical 
distribution of bug-fixing time, and utilize Monte Carlo 
simulations to estimate the total amount of time required 
for a project team to fix new bugs. The evaluation results 



on three CA projects show that the mean relative error in 
prediction is only 6.45%. 

• How long does it take to fix this bug? We confirm the 
previous work [9, 23] that we can predict the slow (e.g., 
above a time threshold) or quick (below a time threshold) 
fix for a certain bug by using the basic bug-related 
information collected from a bug-tracking system. We 
also propose a kNN-based method for classifying the bug-
fixing time, which can improve the accuracy of existing 
methods. Our classification model utilizes basic bug-
related features such as severity, priority, submitter, etc. 
We also define new distance metrics for measuring 
similarity between two bug reports, and apply the kNN 
technique to determine the effort required for a new bug 
based on the assumption that similar bugs require similar 
bug-fixing effort. The evaluations on three CA projects 
show that the overall F-measure is 72.45% on average.  
 

For each of the above questions, we also show that the 
proposed methods outperform the existing methods, using the 
real data from CA. 

We believe that our methods can help project teams 
improve the maintenance process and have the potential to be 
applied across companies. The rest of the paper is organized as 
follows. Section II briefly introduces the background about the 
bug-fixing process adopted at CA and an empirical study of a 
CA maintenance project. Section III presents the proposed 
method for predicting the number of fixed bugs. Section IV 
presents the proposed method for predicting the total time 
required for fixing a given number of bugs. Section V presents 
the proposed method for predicting whether it will be a slow or 
quick fix for an individual bug. Section VI describes our 
experimental design and Section VII presents the results. We 
discuss the proposed methods in Section VIII and threats to 
validity in Section IX. Section X briefly describes the related 
work and Section XI concludes this paper. 

II. AN EMPIRICAL STUDY 

A. The CA Maintenance Process 
CA Technologies defines many processes to ensure 

software productivity and quality. The simplified bug-handling 
process adopted in CA is as follows. Once a bug is identified, it 
enters into the bug tracking system. The majority of bugs are 
found by QA, but some are raised by technical support in 
response to customer issues. New bugs are assigned to the 
development manager responsible for the release in which the 
bug was found. The submitter supplies information about the 
bug, to enable the developers to identify and resolve the issue.  

Once a bug is created, the development manager examines 
the bug and verifies that the submission has been made 
correctly, i.e., all required information is present. If it is so, 
she/he assigns it to a developer to address the issue. The 
manager should also verify that the priority of the bug is set 
appropriately and correct it if necessary. The developer who is 
assigned the bug should examine the bug record and 
determines the problem. If the bug is not to be fixed in the 
current release, it is marked 'Deferred'. If the bug is fixed, the 

developer submits the changes to source code repository and a 
QA will verify the bug fix. The development manager who is 
responsible for the release (to whom the bug was originally 
assigned when it was opened) will close the bug. 

Submitted

Deferred Fixed

Closed
 

Figure 1. The simplified bug-handling process 

B. An Empirical Study of a CA Maintenance Project 
To get a deeper understanding of the CA maintenance 

process, we analyze an actual project (Project A) of CA 
Technologies and collect its maintenance data. This project 
relates to an IT management product for enterprise customers. 
The product has been released for more than five years and is 
used worldwide. Currently, approximately 60 developers, QA 
engineers and support engineers are involved in the 
maintenance of this project, implementing new feature requests 
and fixing bugs reported by the QA team and customers. 

We perform an empirical analysis of the bug data of Project 
A. Not all bugs of Project A can be fixed quickly upon arrival, 
due to the limited resources, time constraints and unclear bug 
descriptions. We calculate the time needed to fix the bugs. Due 
to data sensitivity, only relative time scales are given, measured 
in “normalized units”, where 1 unit is approximately equal to 
the median time needed to fix a bug of Project A. We rank the 
bugs according to their fix time (in descending order, the bug 
with the longest fix time is ranked in the top).  
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Figure 2. The distribution of bug-fixing time for Project A 

Figure 2 shows the distribution of bug-fixing time. Clearly, 
we can see that the time needed to fix the bugs exhibits large 
variations, ranging from near zero to 21 units. Furthermore, the 
effort distribution is an uneven, “long-tail” distribution - a large 
percentage of bugs are fixed within a relatively short time 



period (e.g., within 1 time unit) and a small percentage of bugs 
require a long time to address. This analysis shows that the 
bug-fixing time is not uniformly or normally distributed, thus 
posing challenges for accurate prediction. 

We also analyze the impact of different bug-related features 
on bug-fixing time. Table 1 shows the fixing time for bugs of 
different severities and priorities. In general, bugs with higher 
severity and priority are fixed faster (as indicted by the mean 
values). However, the variations (as indicated by the max and 
standard deviation values) of bug-fixing time are also large. 
There are no simple rules that can accurately estimate the bug-
fixing time merely based on severity and priority. The problem 
of predicting bug-fixing time is not straightforward and 
requires further investigation. 

Table 1. The fixing time (in units) for bugs of different severities and 
priorities 

Feature Value Max Mean Std.  
Dev. 

Severity Blocking 6.86  0.58  1.07  
Functional 10.94  0.99  1.39  
Enhancement 10.32  1.22  1.59  
Cosmetic 10.06  1.24  1.73  

Priority Critical 7.82  0.56  0.90  
Serious 10.94  0.85  1.29  
Medium 10.06  1.40  1.69  
Minor 6.30  1.00  1.39  

III. PREDICTING HOW MANY BUGS WILL BE FIXED 
We propose a method for predicting the number of bugs 

that can be fixed by a given time in the future. Figure 3 shows 
the overall process of the method. We first construct a defect 
state transition model from the historical data. We then 
estimate the number of fixed bugs in the future based on the 
state transition model and the predicted total number of bugs.  
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Figure 3.  The process of predicting the number of fixed bugs 

In a defect state transition process such as the CA process 
shown in Figure 1, a bug’s next state is only dependent on its 
current state. Therefore, the state transition process can be 
treated as a Markov model (more specifically, the Discrete 
Time Markov Chain model). Figure 4 below describes the 
mapping from the CA defect state transition graph to a Markov 
model. In the mapping, each defect state is translated into a 
state labeled with a sequential number. Each arrow linking two 

states has a transitional probability from the start state to the 
destination state. Moreover, for each state in the Markov model 
we add an arrow pointing to itself as a defect could remain in 
the same state at the next time interval. Such a defect transition 
model can represent the project team’s bug-fixing ability. 

Submitted

Deferred Fixed

Closed

P1

P3 P2

P4

 
Figure 4. Mapping from CA defect handling process to a Markov 

model 

For the model shown in Figure 4, we can obtain the state 
transition probability matrix as follows: 

𝑃𝑃 =

⎝

⎜⎜
⎛

𝑝𝑝11𝑝𝑝12  … 𝑝𝑝1,𝑥𝑥−1𝑝𝑝1,𝑥𝑥
𝑝𝑝21𝑝𝑝22 … 𝑝𝑝2,𝑥𝑥−1𝑝𝑝2,𝑥𝑥.

.

.
𝑝𝑝𝑥𝑥,1𝑝𝑝𝑥𝑥,2 …  𝑝𝑝𝑥𝑥,𝑥𝑥−1 𝑝𝑝𝑥𝑥,𝑥𝑥⎠

⎟⎟
⎞

  

where pij  represents the probability from state i to state j, e.g. 
p12 represents the probability of a defect transferring from 
SUBMITTED to FIXED. 

We gather statistics about the number of bugs in each state 
at an initial time t0, and then compute the distribution of bugs 
among the states (i.e., the state probability vector). We define 
the number of bugs in SUBMITTED, FIXED, DEFERRED 
and CLOSED as n1, n2, n3, and n4, respectively. Then the sum 
of the defects is S = 4

1 ii
n

=∑ , and the state probability vector at 
t0  is: 

𝛼𝛼0 = (𝑛𝑛1
𝑆𝑆� ,𝑛𝑛2

𝑆𝑆� ,𝑛𝑛3
𝑆𝑆� ,𝑛𝑛4

𝑆𝑆� ) 

Utilizing the characteristic of Markov model [12], we can infer 
the distribution of bugs across the states at time t based on the 
initial states a0 and the state transition matrix P as follows:  

𝛼𝛼𝑡𝑡 = 𝛼𝛼0 ∙ 𝑃𝑃𝑡𝑡   

Assuming the number of fixed bugs at t is Nt, the number of 
bugs at the SUBMITTED state at time t is St, the number of 
newly submitted bugs between t and t +1 is ∆St+1, we can infer 
the number of bugs that can be fixed at time t+1 as follows:  

𝑁𝑁𝑡𝑡+1 = 𝑁𝑁𝑡𝑡 + (𝑝𝑝12 + 𝑝𝑝13 ∙ 𝑝𝑝32 ) ∙ (𝑆𝑆 𝑡𝑡 + ∆𝑆𝑆 𝑡𝑡+1)  

In the equation above, St, the number of bugs that remains at t, 
can be estimated using the following equations:  

𝑆𝑆𝑡𝑡 = 𝑇𝑇𝑡𝑡 ∙ 𝛼𝛼𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  = 𝑇𝑇𝑡𝑡 ∙ (𝛼𝛼0 ∙ 𝑃𝑃𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
 

∆𝑆𝑆 𝑡𝑡+1 = 𝑇𝑇𝑡𝑡+1 − 𝑇𝑇𝑡𝑡   



, where Tt +1 and Tt are the total number of bugs at time t+1 
and t, respectively. submitted

ta means the percentage of bugs at 
the SUBMITTED state at time t. 

To estimate the Tt+1 value (the total number of bugs at time 
t+1), we apply regression analysis [22] to fit the growth curve 
of the bug numbers based on historical data, and then use the 
fitted regression model to predict the number of bugs at a 
future time. 

 
IV. PREDICTING TOTAL BUG-FIXING TIME 

In this section, we propose a Monte Carlo based method for 
predicting total time required for a project team to fix a given 
number of bugs. The process is shown in Figure 5. For a 
maintenance project, we first select the best-fitting distribution 
of bug-fixing time from the historical data. We then perform 
Monte Carlo simulations [6] over the selected distribution, and 
predict the total time required for fixing N new bugs. 
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Figure 5. The process of predicting time for fixing N bugs 

An initial empirical study (as described in Section II) shows 
that the distribution of bug-fixing time is skewed. Some 
examples of commonly-found skewed distributions include 
exponential, lognormal and Weibull distributions. The details 
about these distributions can be found in statistics textbooks 
[25]. We should note that other skewed distributions could be 
also applied here to fit the actual data about bug-fixing time. 

To determine the best-fitting distribution function P, we 
evaluate the goodness of the fitting using the coefficient of 
determination (R2) and the Standard Error of Estimate (Se) [22]. 
The R2 statistic measures the percentage of variations that can 
be explained by the model. Its value is between 0 and 1, with 
higher value indicating a better fit. Se is a measure of the 
absolute prediction error and is computed as: 

2
)'( 2

−

−
= ∑

n
yy

Se
 

, where y and y’ are the actual and predicted values, 
respectively. The larger Se indicates the larger prediction error. 

After determining the statistical distribution function P that 
best fits the historical bug-fixing data, we can then estimate the 
total time for fixing N new bugs using Monte Carlo simulations. 
Monte Carlo simulation [6] is a statistical simulation that uses 
repeated random sampling to compute results. It has been 

widely applied to solve problems in many fields such as 
physics, finance, and engineering.  

To estimate the time required for fixing N bugs, we 
randomly sample N numbers from the distribution of bug-
fixing time P, using the parameters obtained from the historical 
data. These N numbers are pseudo random numbers that follow 
the same distribution as P. Each number represents bug-fixing 
time for a bug. We then compute the sum of these N numbers. 
We perform such a simulation process many times (e.g., 100 
times) and calculate the average value as the final prediction 
output. 

V. PREDICTING FXING TIME OF INDIVIDUAL BUGS 
In this section we propose a method for predicting 

slow/quick fixes. The “slowness”/“quickness” is defined by a 
threshold such as 1 or 2 time units. We first identify the 
features of bugs and compute the similarities between bug 
reports. We then construct a kNN-based classification model 
for predicting for a given bug report whether the fix will be 
slow or quick, based on the assumption that the similar bugs 
could require similar bug-fixing effort. 

A. Feature Collection 
We are able to collect the following bug-related features 

from the CA bug tracking system to construct the prediction 
model:      
• Submitter: the bug report submitter.  
• Owner: the developer who is responsible for resolving the 

bug 
• Severity: the severity of a bug report (Blocking, 

Functional, Enhancement, Cosmetic, or Request for 
Information). 

• Priority: the priority of a bug report (Critical, Serious, 
Medium, Minor) 

• ESC: indicating whether the bug is an externally 
discovered bug (reported by end users) or an internally 
discovered bug (reported by the QA team). 

• Category: the category of the problem (such as Account 
Management, Documentation, Configuration, etc.). The 
existing bug tracking system used in CA predefines a list 
of categories, and allows the users to manually select 
which category the bug belongs to. 

• Summary: a short description of the problem. 
  

For the bug Priority and Severity features, we define 
metrics to capture their data characteristics and use the 
measurement values as input to the classification model 
(Section V.B). For the bug Summary feature, we compute the 
distance between two summaries by comparing the words 
contained (Section V.C). 

B. Measuring Distance in Priorities and Severities 
There are four levels of priorities in the CA projects: 

“Critical”, “Serious”, “Medium”, “Minor”. Conventionally, an 
instance-based classifier such as kNN calculates the distance 
between non-numeric values using the following formula: 



1 2
1 2

1 2

1
( , )

0
v v

d v v
v v
≠

=  =
 

As d(Critical, Serious) should be smaller than d(Critical, 
Minor), we define the distances between different priorities as 
shown in Figure 6. For example, the distance between Critical 
and Minor bugs is 0.75, and the distance between Critical and 
Medium bugs is 0.5. This distance measure is used when 
computing the distances between bug reports of different 
priorities. In the same manner, we also define distances 
between different severities. 
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Figure 6. Measuring the distances between bug priorities  

C. Measuring Distance in Bug Summary 
Many bug tracking systems, including the one used in CA 

Technologies, contain a summary for each bug report 
describing the symptoms of the problem. To measure the 
distance between the summaries of two bug reports, we use the 
bag of words model [15] and calculate the distance ( , )Sd α β  
between bug reports α  and β by considering how different the 
two sets of words are. 

To eliminate useless words like “or”, “that”, “in”, or 
“contains”, we first generate a set of standard words extracted 
from the CA pre-defined categories. When comparing the 
difference between two sets of words from bug’s reports, we 
only count those contained in the standard word set. 

( ) ( )
( , ) 1

( ) ( ) 1
C

S
C

W S W S W
d

W S W S W
α β

α β

α β = −
+

 

 
 

, where Sα  stands for the synopsis of α  and ( )W Sα
represents 

the set of words appeared. CW  is the set of standard words 

extracted from pre-defined category labels. 

D. Construction of Classificaiton Model  
We use an adapted kNN (k-Nearest Neighbor) classifier in 

our method, based on the assumption that a new bug should 
belong to the class of its similar bugs. kNN is a typical 
instance-based learning classifier. To measure the distance 
between two bug repots, we define the following Euclidean 
based distance metric: 

2 2

1
( , ) ( , ) ( , )

fN

R S i i
i

d d dα β α β α β
=

= +∑  

, where α and β  are two different bug reports.
f

N counts the 

total number of features, and 
i

α  represents the i-th feature 
value of bug α . ( , )i id α β  represents the Euclidean distance in 
the ith feature between bugs α and β . ( , )Sd α β  represents the 
distance between the summaries of the two bugs. 

After constructing the kNN-based classification model, we 
then predict whether the fix will be slow or quick (exceed or 
below a certain time threshold) for a new bug report. 

VI. EXPERIMENTAL DESIGN 

A. Datasets 
To evaluate the proposed methods, we use bug datasets 

collected from three CA Technologies projects. Project A is the 
project we described in Section II. Projects B and C are for 
other commercial IT management products released by CA. All 
these projects have actively maintained the associated products 
for at least 5 years. We analyze the bugs reported over a 45 
month interval for Project A, a 30 month interval for Project B, 
and a 29 month interval for Project C. The bugs are found by 
the QA teams and customers. Due to sensitivity, we cannot 
release the actual number of reported and fixed bugs during 
these periods. All these projects are large-scale projects which 
involve 40-100 developers, QA engineers, and support 
engineers.  

B. Research Questions 
In this section, we evaluate the effectiveness of the 

proposed methods for predicting the bug-fixing time. We 
design the experiments to answer the following research 
questions: 

 
RQ1: How many bugs can be fixed? 

In this RQ, we evaluate the ability of the proposed method 
for predicting the number of bugs that can be fixed within a 
given time period in the future. To do this, we train a prediction 
model using 12 months of data and then predict the number of 
bugs which can be fixed in three months immediately 
following the training time period.  

To further evaluate the effectiveness of the proposed 
method, we compare it with a simple prediction method 
(average-based method) that uses the average number of fixed 
bugs in the past to predict the number fixed bugs in the next M 
months: 

0mN N M x= + ×  
, where N0  and Nm represent the number of fixed bugs at time 
t0 and tm, respectively. x is the arithmetic average of fixed 
bugs in each month obtained from the training data. 

To evaluate the accuracy of the predictions, we use the 
MRE (Magnitude Relative Error) metric, which is defined as 
follows: 

| - ' |y yMRE
y

=  

, where y and y’ are the actual value and its estimate, 
respectively. The value of MRE is between 0 and 1. The 
smaller the value shows the better the estimation will be. 



 
RQ2: How accurate is the proposed method for predicting the 
time for fixing N bugs? 

In this RQ, we evaluate the ability of the proposed Monte 
Carlo based method for predicting the total amount of time 
required for fixing a given number of bugs. To do this, for each 
studied project, we randomly sample 90% of the maintenance 
data as the training set and obtain the best-fit statistical 
distribution of bug-fixing time. We then perform Monte Carlo 
simulations to obtain the bug-fixing time for the rest of 10% 
data. The Monte Carlo simulation is performed using the 
MATLAB tool. We then compare the predicted and actual 
results using the MRE metric. 

We also compare the proposed method with an average-
based method, which is a simple prediction method that uses 
the arithmetic average of bug-fixing time (x ) obtained from 
the training data to predict the time required to fix N bugs in the 
test data.  

xNy ×=  
As there is currently lack of related methods for 

predicting the total time required for fixing bugs, we expect 
that the proposed method should at least outperform the simple 
average-based method.  

 
RQ3: How accurate is the proposed method for predicting 
fixing time for an individual bug? 

In this RQ, we evaluate the ability of the proposed kNN-
based method for predicting slow/quick fix for a given bug. We 
use different thresholds to determine slow-to-fix bugs (0.1, 0.2, 
0.4, 1, and 2 time units), and examine the performance of the 
proposed method. 

In this RQ, we also evaluate if the proposed method is more 
effective than the existing methods [9, 23]. The existing 
methods use basic bug-related information without 
improvement (without introducing new distance measures), and 
adopt commonly-used classifiers including Decision Tree and 
Naïve Bayes. Furthermore, we also compare with other 
classifiers such as Bayesian Network (BayesNet) and RBF 
Network. In our experiments, we use the implementations of 
these classifiers in WEKA [29], an open source data mining 
tool. 

To evaluate the performance of the proposed approach in 
predicting the time to fix a bug, we adopt the commonly-used 
metric weighted average F-measure [29]. F-measure  considers 
both Recall and Precision to score the accuracy. For each class 
(e.g., CQ for quickly fixed bugs and CS for slowly fixed bugs), 
the F-measure with respect to a particular class Ci is defined as 
follows: 

2 i i

i

i i

C C
C

C C

precision recall
F

precision recall

⋅
= ⋅

+  
The weighted F-measure calculates the weighted average F-

measure considering the class size: 
1

i i

ii

i

C C
CC

C

F N F
N

= ⋅ ⋅∑∑
 

, where 
iCN is the total number of bugs whose actual labels are 

Ci  in the testing set. The values of weighted average F-measure 
are between 0 and 1, the higher the better. 

VII. EXPERIMENTAL RESULTS 
RQ1: How many bugs can be fixed? 

For each project, we calculate the transition probability 
matrix P and construct a state transition model. As an example, 
for Project A, the transition matrix obtained from the 12-month 
training data is given below. The probabilities of some major 
transitions are as follows: 
 From SUBMITTED to SUBMITTED: 58.94% 
 From SUBMITTED to FIXED: 26.78% 
 From SUBMITTED to DEFERRED: 6.02% 
 From DEFERRED to FIXED: 4.99% 
 From FIXED to CLOSED: 49.25% 

𝑃𝑃 =

⎝

⎜⎜
⎛

 
0.5894 0.2678 0.0602  0.0826 
0.0000 0.5075 0.0000 0.4925  
0.0000 0.0499 0.9109 0.0392
0.0000 0.0000 0.0000 1.000 

⎠

⎟⎟
⎞

 

For all projects, the initial distribution of bugs 
0α (state 

probability vector) is as follows: 
Project A (0.1387 0.0747 0.0500 0.7366) 
Project B (0.1862 0.0000 0.1404 0.6734) 
Project C (0.2801 0.0236 0.2330 0.4634) 

We also apply regression analysis to fit the growth curve of 
the total number of bugs Tt over time. We find that the linear 
regression model can fit the CA bug data well: Tt+1 = a⋅Tt + b. 
For all projects, the R2 values are more than 0.98, showing the 
goodness of fit. We build the linear model using the training 
data (12 months) and estimate the total number of bugs during 
the testing period (3 months). 

Having computed the transition matrix P, the initial 
distribution a0, and the number of total bugs Tt+1, we apply the 
proposed method described in Section III to predict the number 
of fixed bugs in the next three months, based on the model 
constructed using the historical data of past 12 months.  

Table 2. The results of a prediction model 

  Predicted Actual MRE 
Project 

A 
Month 1 18.38% 18.91% 2.831% 
Month 2 19.81% 21.30% 6.997% 
Month 3 21.00% 23.78% 11.686% 

Project 
B 

Month 1 24.70% 25.90% 4.633% 
Month 2 26.60% 27.10% 1.845% 
Month 3 28.20% 29.20% 3.425% 

Project 
C 

Month 1 18.84% 18.64% 1.070% 
Month 2 20.14% 20.44% 0.015% 
Month 3 21.24% 21.04% 0.948% 

 
Table 2 shows the MRE values for all projects and for all 

three months. Due to sensitivity, we do not disclose the actual 



and predicted number of fixed bugs. Instead, we use the 
percentage values (with respect to the total number of bugs) to 
denote them. For example, for Project A, our method predicts 
that there are 18.38% fixed bugs in Month 1, while the actual 
number is 18.91%. The MRE value is only 2.831%. For all 
predictions, MRE values range from 0.015% to 11.686%, with 
an average of 3.72%. The results show that the predictions are 
accurate and consistent across all months and across all projects. 

Our experiments also show that the proposed method 
outperforms the average-based method. For example, Figure 7 
shows the comparison results in MRE for Project A. The 
improvement over the average-based method ranges from 10% 
to 44%. 
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Figure 7. The comparisons between the proposed method with the 

average-based method (Project A) 

RQ2: How accurate is the proposed method for predicting 
fixing time of N bugs? 

For each studied project, we first select the best-fitting 
empirical distribution of bug-fixing time from the training set. 
We evaluate three distributions: Weibull, lognormal, and 
exponential distributions using the R2 value and Se values, and 
then determine the best distribution.  The results are shown in 
Table 3. We can see that the Weibull distribution is the best-
fitting distribution for Project A, and the Lognormal 
distribution is the best for Projects B and C.  

These results can be also visually represented in the form of 
CDF (Cumulative Distribution Function). For example, Figure 
8 shows the CDFs we obtained for Project A, which confirms 
that the distribution of bug-fixing time can be best modeled 
using a Weibull function. 

Table 3. The distributions of bug-fixing time 

 Distribution R2 Se 
Project A Exponential 0.9229 0.0438 

Lognormal 0.9879 0.0159 
Weibull 0.9933 0.0128 

Project B Exponential 0.4972 0.082 
Lognormal 0.98 0.0163 

Weibull 0.9578 0.0238 
Project C Exponential 0.8482 0.0639 

Lognormal 0.9868 0.0188 
Weibull 0.9776 0.0246 

 
Figure 8. The distributions of bug-fixing time (Project A) 

After obtaining the empirical distributions of bug-fixing 
time from the training set (90% of the data), we can then apply 
the proposed method as described in Section IV to predict the 
time required for fixing the bugs in the test set (10% of the 
data). We choose the best-fitting distribution for each project 
and run Monte Carlo simulations to obtain the total bug-fixing 
time. The experiments are repeated 100 times and the average 
is computed. The results are shown in Figure 9. For the three 
projects, the MRE values are low (between 1.04% and 15.76%, 
with an average of 6.45%), confirming the usefulness of the 
proposed method. Figure 9 also shows that the proposed 
method outperforms the average-based method. The relative 
improvement ranges from 38.5% to 67.1%. 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Project A Project B Project C

M
RE Proposed

Average-based

 
Figure 9. The results for predicting bug-fixing time  

RQ3: How accurate is the proposed method for predicting 
fixing time for an individual bug? 

Table 4 shows the evaluation results (in terms of weighted 
F-measure) for predicting fixing time for each individual bug, 
under different time thresholds δ (0.1, 0.2, 0.4, 1, and 2 time 
units). In general, all classifiers can lead to weighted F-measure 
above 60%. Our results confirm the existing work [9, 23], that 
using classification techniques (such as Naïve Bayes), we can 
predict whether a bug will be fixed slowly or quickly based on 
the basic bug-related information collected from a bug-tracking 
system. 

Table 4 also shows that in general the proposed method 
outperforms the related methods. For example, for predicting if 
the fixing time for a given bug in Project A is below or above 
0.4 time unit, using the proposed prediction model we could 



achieve the weighted F-measure 66.8%, which is higher than 
the results obtained from other methods. In general, for all 
projects and all thresholds, the weighted F-measure obtained 
from the proposed method ranges from 65% to 85% (with an 
average of 72.45%). The results confirm the effectiveness of 
the new distance metrics introduced in the proposed method. 
We also conduct Pair-wised Wilcoxon Test, and the results 
show that the proposed approach statistically outperforms other 
classifiers at 99% confidence interval. 
Table 4. The results for predicting slow or quick fix of a bug (F-measure)  

 δ 0.1 0.2 0.4 1 2 

Project 
A 

Proposed 0.704 0.659 0.668 0.728 0.852 
BayesNet 0.702 0.633 0.638 0.704 0.828 
Naïve Bayes 0.701 0.636 0.638 0.698 0.832 
RBFNetwork 0.691 0.631 0.630 0.696 0.833 
Decision Tree 0.653 0.495 0.643 0.601 0.798 

Project 
B 

Proposed 0.679 0.685 0.650 0.672 0.703 

BayesNet 0.669 0.613 0.597 0.637 0.643 

Naïve Bayes 0.670 0.610 0.605 0.642 0.645 

RBFNetwork 0.679 0.614 0.610 0.621 0.628 

Decision Tree 0.618 0.520 0.627 0.670 0.632 

Project 
C 

Proposed 0.770 0.793 0.762 0.769 0.773 

BayesNet 0.787 0.768 0.722 0.745 0.78 
Naïve Bayes 0.790 0.773 0.739 0.745 0.775 
RBFNetwork 0.784 0.780 0.739 0.741 0.75 

Decision Tree 0.662 0.776 0.741 0.740 0.765 

To further confirm the superiority of the proposed method, 
we compare the effectiveness of two predicting methods PA 
and PB by using one of the methods (for example, PB) as 
reference measure. When using the same training set and 
testing set, the predicting accuracy difference: Metric(PA) - 
Metric(PB) is considered as the improvement of PA over PB. A 
positive value means that PA performs better than PB (since 
higher accuracy is better). The difference corresponds to the 
magnitude of improvement. For example, if the F-measure 
from PA is 70% and the F-measure of PB is 60%, then the 
improvement of PA over PB is 10%.  

For the studied projects, we run the prediction 200 times, 
and check the improvement of the proposed method over the 
other methods at each time. We find that the proposed method 
outperforms the other methods most of the times. For example, 
Figures 10 and 11 show the improvement of the proposed 
approach (PA) over RBFNetwork (PB) and Decision Tree (PB), 
respectively (when the threshold is 0.6 time unit). The results 
show that the proposed method outperforms the other 
classifiers in most cases. The improvements over RBFNetwork 
are between 0.05% and 9.46%. The improvements over 
Decision Tree are between 10.35% and 31.78%. The results 
confirm the superiority of the proposed method. 
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Figure 10: Improvement of the proposed method over RBFNetwork on 
Project A 
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Figure 11: Improvement of the proposed method over Decision Tree on 
Project A 

VIII. DISCUSSIONS 

A. Which Features are More Effective? 
It is known that different features could have different 

impact on bug-fixing time. For example, Panjer [23] found that 
the most influential factors affecting bug lifetime are 
commenting activity, bug severity, component, and version. 
Guo et al. [10] performed an empirical study to characterize 
factors that affect which bugs get fixed in Windows Vista and 
Windows 7. They found that bugs reported by people with 
better reputations were more likely to be fixed. Bhattacharya 
and Neamtiu [3] performed multivariate and univariate 
regression testing on some open source projects and reported 
there is no correlation between bug-fix likelihood, bug-
opener’s reputation and the time it takes to fix a bug.  

In this study, we analyze the impact of each feature on 
predicting bug-fixing time for each individual bug. We use 
three commonly-used feature ranking methods, namely Chi-
square, Gain Ratio and Information Gain [29]. The results are 
shown in Figure 12. All three feature ranking methods show 
that the Submitter and Owner are the top 2 most important 
features, which contribute 17% to 31% of the classification 
results. Our results confirm what Guo et al. [10] obtained from 
the experiments on the Windows projects. 
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Figure 12. The contribution of different features evaluated by three 

feature ranking metrics 

B. Why Sometimes the Prediction is Wrong? 
Our experiments show that the proposed method is 

effective in predicting bug-fixing time. However, it is not 
perfect and could still lead to prediction errors. To analyze why 
some bug reports’ fixing time cannot be accurately predicted, 
we take a look at some incorrectly classified bugs in detail. For 
example, for the bug (#101209), most of its neighbors suggest 
that this bug could be fixed quickly. However, actually this bug 
took much longer time to fix. The nearest neighbor of the bug 
#101209 is the bug #110284. These two bugs share the same 
priority, severity, submitter, owner, and problem category. 
However, they required different amount of time to fix. In this 
study, we collected the features from the CA bug tracking 
system. This example shows that merely considering the 
existing features are not always sufficient for differentiating 
bug-fixing time. There could have more features (such as the 
organizational and geographical distances [10] and developer 
behavior [24]) affecting the bug-fixing time. Identifying these 
features could help further improve the prediction accuracy. 
This remains an important future work. 

IX. THREATS TO VALIDITY 
We have identified some threats to validities that should be 

taken into consideration when applying the proposed method: 
• Large evolving system: The method we proposed is 

suitable for large software systems that are experiencing a 
long period of evolution and their project team’s bug-
fixing performances are stable. For a small or short-lived 
system, the number of bugs and state transitions are often 
small, thus making the statistical analysis inappropriate. 

• Industry data: All datasets used in our experiments are 
collected from the actual maintenance projects of CA. 
The defect handling process of open source projects may 
be different from that of commercial projects. We will 
evaluate if the proposed methods can be applied to a 
variety of projects including open source projects. This is 
an important consideration for future work. 

• Limited information: In this study, we use readily 
available bug-related information provided by the existing 
bug tracking system. This information could be limited. 

Identifying and collecting more information could further 
improve the prediction results.  

X. RELATED WORK 
In recent years, there have been many empirical studies on 

software defects. For example, software defect prediction 
methods collect historical defect data by mining software 
repositories (such as bug database and version archives), 
identify program features (such as complexity and process 
metrics), and then build classification models to predict the 
defect-proneness (defective or non-defective) of a new module 
[19, 27]. There are also studies on the empirical analysis of 
defect distributions in a large software project [1, 7]. Some 
researchers also studied defect life cycles [16, 30] and triage [2, 
11]. In this work, we perform an empirical study of the bug-
fixing time using real industrial, and proposed methods to 
predict the effort required to fix bugs. 

In software engineering, estimation techniques such as 
COCOMO [4] were propose to estimate software development 
efforts based on project size (measured in terms of lines of code 
or function points) and technical complexity factors. 
COQUALMO (COnstructive QUALity MOdel) [5] is an 
estimation model that can be used for predicting number of 
residual defects/KSLOC (Thousands of Source Lines of Code) 
or defects/FP (Function Point) in a software project. It could 
analyze the impact of various defect removal techniques and 
the effects of personnel and project characteristics on software 
quality. However, these techniques cannot be directly applied 
to estimate bug-fixing time. 

There are also studies on the measurement of bug-fixing 
performance. For example, Mockus et al. proposed quality 
metrics (such as percentage of defective files) to understand 
software maintenance effort quantitatively [8, 20]. Mockus also 
proposed regression models to estimate maintenance effort and 
its distribution over time [21].  Kim et al. [13] studied the life 
span of bugs in ArgoUML and PostgreSQL projects, and found 
that bug-fixing time has a median of about 200 days. Guo et al. 
[10] performed an empirical study to characterize factors that 
determine which bugs get fixed in Windows 7. They found that 
bugs reported by people with higher reputation were more 
likely to get fixed, as were bugs opened by people on the same 
development team and working in geographical proximity. 

Some researchers also proposed methods for predicting 
bug-fixing efforts. For example, Panjer [23] proposed to use 
machine-learning models to predict the time to fix a defect. 
Zeng and Rine [31] propose to predict the bug-fix effort using 
Neural Networks on a NASA dataset. Using a Random Forest 
algorithm, Marks et al. [18] can correctly predict the class (low 
or high fix effort) of a bug fix with a success rate of 65%. Song 
[26] proposed association rule based methods for predicting 
bug associations and bug-fixing effort. Weiß et al. [28] studied 
the lifecycle of bugs and proposed to use kNN method to 
determine the fix-effort for bugs in the JBoss project. In our 
work, we propose a kNN-based method for predicting fixing 
time for a bug. We also introduce new distance metrics for 
comparing the similarity between two bug reports, which can 
improve the prediction accuracy. 



XI. CONCLUSIONS 
Bug fixing is an important activity for almost all software 

organizations. The ability to predict bug-fixing time can help 
estimate maintenance effort and improve project management. 
Based on empirical studies of three CA maintenance projects, 
we have proposed the following methods: 
• a Markov model based method for predicting the number 

of fixed bugs in the future. The evaluation results show 
that the mean relative error in prediction is only 3.72%. 

• a Monte Carlo based method for predicting the total time 
required for fixing a given number of bugs. The 
evaluation results show that the mean relative error in 
prediction is only 6.45%. 

• a kNN-based method for classifying the time (slow or 
quick) required for fixing a certain bug. The evaluation 
results show that we can achieve an average weighted F-
measure 72.45%.  

We believe that our methods have a potential to be applied 
to other software organizations to improve their software 
maintenance process. For example, if an organization’s QA 
policy requires that at least P% of bugs being fixed before 
releasing a product, then our methods can estimate how long it 
would take to fix these bugs and the associated cost. Our 
method could also estimate the number of bugs that can be 
fixed within a given future time period, and predict the slow or 
quick fix of a given bug. 

In the future, we plan to carry out large-scale evaluations of 
the proposed method on a variety of projects. We will also 
identify more factors (including project, developer and 
organization related factors) that could affect the bug-fixing 
time and analyze the causal relationships among them. 
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