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Abstract—Background: Cross-company defect prediction (CCDP) is a field of study where an organization lacking enough local data

can use data from other organizations for building defect predictors. To support CCDP, data must be shared. Such shared data must

be privatized, but that privatization could severely damage the utility of the data. Aim: To enable effective defect prediction from shared

data while preserving privacy. Method: We explore privatization algorithms that maintain class boundaries in a dataset. CLIFF is an

instance pruner that deletes irrelevant examples. MORPH is a data mutator that moves the data a random distance, taking care not to

cross class boundaries. CLIFF+MORPH are tested in a CCDP study among 10 defect datasets from the PROMISE data repository.

Results: We find: 1) The CLIFFed+MORPHed algorithms provide more privacy than the state-of-the-art privacy algorithms; 2) in terms

of utility measured by defect prediction, we find that CLIFF+MORPH performs significantly better. Conclusions: For the OO defect data

studied here, data can be privatized and shared without a significant degradation in utility. To the best of our knowledge, this is the first

published result where privatization does not compromise defect prediction.

Index Terms—Privacy, classification, defect prediction

Ç

1 INTRODUCTION

WITHIN-COMPANY defect prediction (WCDP) is the means
by which organizations predict the number of defects

in their software. Cross-company defect prediction (CCDP)
looks at the feasibility of learning defect predictors using
data from other companies. Recent studies show that defect
and effort predictors built from cross-company data can be
just as effective as predictors learned using within-company
data [1], [2], [3] (caveat: the cross-company data must be
carefully filtered before being applied locally). This is
potentially a very important result that implies the existence
of general principles of software engineering (SE) (such
generalities would lead us to general models of SE).

However, before we conduct widespread CCDP experi-
ments, we must address the privacy concerns of data owners.
Extracting data from organizations is often difficult due to
the business sensitivity associated with the data. Because of
this sensitivity, data owners who want to share limited
amounts of useful data (say, to advance scientific research
leading to improved software) need to do so without
breaching any data privacy laws or company privacy
policies. Unless we can address these concerns, continued
progress in this promising area of CCDP will be stalled.

For these reasons, many researchers doubt the practi-
cality of data sharing for the purposes of research. In a
personal communication, Barry Boehm reports he can

release none of the data that his COCOMO team collected
after 1981. Similarly, at a recent keynote address at ESEM ’11,
Elaine Weyuker doubted that she will ever be able to release
the AT&T data she used to build defect predictors [4].

For companies with common concerns (e.g., subcon-
tractors for a primary company), the benefits of sharing
data can include improved software quality and reduced
SE costs. Ideally, these organizations should be able to
share data without revealing too much. Such organizations
need to

1. prevent the disclosure of specific sensitive metric
values from their released data, and

2. ensure that the privatized data remains useful for
research purposes such as CCDP.

To date, the research community has not achieved these
goals. As shown below, standard methods such as
k-anonymity do not protect against any background knowl-
edge of an attacker (see Table 1 for a definition of this and
other terms used in this work) and so may still reveal the
sensitive attribute of a record. Moreover, two recent reports
concluded that the more we privatize data, the less useful it
becomes for certain utilities of certain tasks, for example,
classification. Grechanik et al. [5] and Brickell and Shmatikov
[6] reported that the application of standard privacy
methods such as k-anonymity, l-diversity, and t-closeness
damages inference power as privacy increases.

This paper proposes two privatization algorithms. The
CLIFF instance pruner finds attribute subranges in the data
that are more present in one class versus any other classes.
These power subranges are those that drive instances furthest
from the class boundaries. If an instance lacks these power
subranges, then their classification is more ambiguous.
CLIFF deletes the instances with the fewest power subranges.

After CLIFF, the MORPH instance mutator perturbs
all instance values by a random amount. This amount is
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selected to create a new instance which is different from the

original instance and does not cross class boundaries.
Potentially, CLIFF+MORPH can increase privacy in three

ways. First, CLIFF preserves the privacy of the individuals it

deletes (since these data are no longer available). Second,

MORPH increases the privacy of all mutated individuals

since their original data is now distorted. Finally, to ensure

that MORPHed instances are different from instances in the

original dataset, if a MORPHed instance matches an

instance from the original data, it is either MORPHed again

until it no longer matches the original or it is removed.

To assess the privacy and utility of CLIFF+MORPH, we
explore three research questions.

. RQ1: Does CLIFF+MORPH provide better balance
between privacy and utility than other state-of-the-
art privacy algorithms?

. RQ2: Do different classifiers affect the experimental
results?

. RQ3: Does CLIFF+MORPH perform better than
MORPH?

1.1 Results and Contributions

The experiments of this paper show that after applying
CLIFF+MORPH, both the efficacy of classification and
privacy are increased. Also, combining CLIFF and MORPH
improves on prior results. Previously, Peters and Menzies
[7] used MORPH and found that, sometimes, the privatized
data exhibited worse performance than the original data. In
this study, we combine CLIFF and MORPH and show that
there are no significant reductions in the classification
performance in any of the datasets we study. Note that
these are CCDP results where data from many outside
companies were combined to learn defect predictors for a
local company.

Further, it is well known that pruning before classifying
usually saves time [8]. For instance, tomcat, the largest
dataset used in the study, is more than 163 times faster
when CLIFF prunes away 90 percent of the data prior to
MORPHing. That is, using this combination of CLIFF and
MORPH, we achieve more privacy for effective CCDP in
less time.

These results are novel and promising. To the best of our
knowledge, this is the first report of a privacy algorithm
that increases privacy while preserving inference power.
Hence, we believe CLIFF+MORPH is a better option for
preserving privacy in a scenario where data is shared for
the purpose of CCDP.

1.2 Relation to Prior Publications

This paper extends a prior publication [7] in five ways, First,
as said above, this paper shows that combining CLIFF and
MORPH is better than just running MORPH.

Second, in addition to naive Bayes (NB), we experimen-
ted with two additional classification techniques (neural
networks (NNs)) and support vector machines (SVMs)).

Third, in addition to data swapping, we include
experiments with k-anonymity.

Fourth, based on reviewer feedback, we have improved
our increased privacy ratio (IPR) measure such that it now
uses 100%�% of correct guesses or breaches: (See Table 1
for more details.)

Finally, this paper has more extensive descriptions of our
motivation, algorithms, and related work.

1.3 Organization

The remainder of this paper is structured as follows: Table 1
lists the key terms of this paper. We present background on
WCDP, CCDP, utility measures, and privacy in Section 2.
Next, we describe the problems with privacy in Section 3,
followed by our solution and privacy algorithms in
Section 4. In Section 5, the means of assessing privacy is
explained and in Section 6 experimental procedure and
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results are presented. Finally, threats to validity, related
work, the conclusion, and future work are discussed in
Sections 7, 8, and 9, respectively.

2 BACKGROUND

2.1 Within Company Defect Prediction

Defect prediction allows software companies to take
advantage of early defect detection. It allows for the
focusing the QA budgets on where it might be most cost
effective [10]. This is an important task as, during
development, developers have to skew their quality assur-
ance activities toward artifacts that they believe require the
most effort due to limited project resources.

Models made for defect prediction are built with within-
company (local) datasets using common classification
techniques [11], [12]. The datasets are comprised of
independent variables such as the code metrics used in
this work and one dependent variable or prediction target
with values (labels) to indicate whether or not defects are
present. A prediction model created from a defect dataset
can then take a new unlabeled instance and label it as
defective or not defective.

2.2 Cross-Company Defect Prediction

When data can be shared between organizations, static
code defect predictors from one organization can general-
ize to another. For example, defect predictors developed at
NASA [11] have also been used in software development
companies outside the US (in Turkey). When the inspec-
tion teams focused on the modules that trigger the defect
predictors, they found up to 70 percent of the defects
using just 40 percent of their QA effort (measured in staff
hours) [13].

Such CCDP is useful since, as Zimmermann et al. [14]
observed, defect prediction via local data is not always
available to many software companies as

. the companies may be too small and

. the product might be in its first release and so there
is no past data.

Kitchenham et al. [15] also saw problems with relying on
within-company datasets. They noted that the time required
to collect enough data on past projects from a single
company may be prohibitive. Additionally, they stated that
collecting within-company data may take so long that
technologies used by the company would have changed
and therefore older projects may no longer represent
current practices.

Initial experiments with CCDP were either very negative
[14] or inconclusive [15]. Recently, we have had more
success using better selection tools for training data [2], [3],
but this success was only possible if classifying technique
had unrestricted access to all the data. As discussed below,
this is a problem.

2.3 Utility Measures

The defect data used in this work are mainly utilized via
classification. The goal is to predict if an unlabeled instance
is defective or not defective. However, our proposed privacy
algorithms can work for other classification tasks as well.

These tasks can be applied to data that is extracted from
software. For example, the proposed approach can be used
to classify software applications to assign them to different
semantic categories like financial and games, or as in our case
defective or not defective.

Since our research focuses on defect data, we elaborate
on defect prediction in the following sections.

2.4 Privacy and CCDP

Data sharing across companies exposes the data provider to
unwanted risks. Some of these concerns reflect the low
quality of our current anonymization technologies. For
example, the state of Massachusetts once released some
health care data anonymized according to HIPPA regula-
tions [16]. When this “anonymized” data was joined to
other data (Massachusetts’ list of registered voters) it was
possible to identify which health care data corresponded to
specific individuals (e.g., former Massachusetts governor
William Weld [17]).

We say that reidentification occurs when an attacker with
external information such as a voters’ list can identify an
individual from a privatized dataset. The datasets used in
this study are aggregated at the project level and do not
contain personnel or company information. Hence, reiden-
tification of individuals is not explored further in this study.

On the other hand, sensitive attribute disclosure is of
great concern with the data used in this study. This is
where an individual in a dataset can be associated with a
sensitive attribute value; for example, software develop-
ment time. Such sensitive attribute disclosure can prove
problematic. Some of the metrics contained in defect data
can be considered as sensitive to the data owners. These
can include lines of code (loc) or cyclomatic complexity
(max-cc or avg-cc).1 If these software measures are joined
to development time, privacy policy may be breached by
revealing (say) slow development times.

3 PROBLEMS WITH PRIVACY

Many researchers comment on how privatization algo-
rithms can distort data. For example, consider privatization
via generalization and suppression. Generalization can be
done by replacing exact numeric values with intervals that
cover a subrange of values, for example, 17 might become
15..20, or by replacing symbols with more general terms, for
example, “date of birth” becomes “month of birth.”
Suppression can be done by replacing exact values with
symbols such as a star or a phrase like “don’t know” [21].
According to Fung et al. [19], generalization and suppres-
sion hide potentially important details in the QIDs that can
confuse classification. Worse, these transforms may not
guarantee privacy. For example, consider privacy-via-
perturbation. Suppose an attacker has access to multiple
independent samples from the same distribution from
which the original data was drawn. In that case, a principal
component analysis could reconstruct the transform from
the original to privatized data [22]. Here, the attacker’s goal
is to estimate the matrix (MT ) used to transform the original
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data to its privatized version. MT is then used to undo the
data perturbation applied to the original data. According to
Giannella et al. [22], MT ¼WD0Z

0, where W is the
eigenvector matrix of the covariance matrix of the priva-
tized data. Z0 is the transform of the eigenvector matrix of
the covariance matrix of the independent samples. Finally,
Do is an identity matrix.

Widely used privatization approaches include k-anon-
ymity, l-diversity, t-closeness, and �-differential. k-anon-
ymity [17] makes each record in the table indistinguishable
from k� 1 other records by suppression or generalization
[17], [23], [24]. The limitations of k-anonymity, as listed
by Brickell and Shmatikov [6], are many-fold. They state
that k-anonymity does not hide whether a given individual
is in the database. Also, in theory, k-anonymity hides
uniqueness (and hence identity) in a dataset, thus reducing
the certainty that an attacker has uncovered sensitive
information. However, in practice, k-anonymity does not
ensure privacy if the attacker has background knowledge of
the domain (see Fig. 1).

Machanavajjhala et al. [25] proposed l-diversity. The aim
of l-diversity is to address the limitations of k-anonymity by
requiring that for each QID group2 there are at least
l distinct values for each sensitive attribute value. In this
way, an attacker is less likely to “guess” the sensitive
attribute value of any member of a QID group.

Work by Li and Ruhe [26] later showed that l-diversity
was vulnerable to skewness and similarity attacks, making it
insufficient to prevent attribute disclosure. Hence, Li
and Ruhe proposed t-closeness to address this problem.
t-closeness focuses on keeping the distance between the
distributions of a sensitive attribute in a QID group and
that of the whole table no more than a threshold t apart.
The intuition is that even if an attacker can locate the QID
group of the target record, as long as the distribution of the
sensitive attribute is similar to the distribution in the whole
table, any knowledge gained by the attacker cannot be
considered as a privacy breach because the information is
already public. However, with t-closeness, information
about the correlation between QIDs and sensitive attributes
is limited [26] and so causes degradation of data utility.

According to Fung et al. [19], �-differential privacy is
based on the idea that the risk to the record owners privacy
should not substantially increase as a result of participating
in a statistical database. So, instead of comparing the prior
probability and the posterior probability before and after
accessing the published data, Dwork [27], [28] proposed to
compare the risk with and without the record owners data
in the published data.

Dwork [27], [28] defines �-differential privacy as follows:

We say databases D1 and D2 differ in at most one element if
one is a proper subset of the other and the larger database
contains just one additional row.

Differential privacy falls into the category of output
perturbation, where it is achieved by adding noise to the
outcome of a query. Work by Dinur and Nissim [29] also
falls into this category and forms the basis of Dwork’s work
on differential privacy [27], [28].

Although �-differential privacy assures record owners
that they may submit their personal information to the
database securely, it does not prevent membership disclo-
sure and sensitive attribute disclosure studied in this work.
This is shown in an example from Chin and Klinefelter [30]
in a Facebook advertiser case study. Through reverse
engineering, Chin and Klinefelter [30] inferred that Facebook
uses differential privacy for its targeted advertising system.
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because of generalization or suppression.
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To illustrate the problem of membership and sensitive
attribute disclosure, the authors described Jane’s curiosity
about her neighbor John’s HIV status when she learned that
he was on the finishers list for the 2011 Asheville AIDS Walk
and 5K Run. So, armed with John’s age and zip code, she
went to Facebook’s targeted advertising area and found that
there was exactly one male Facebook user age 36 from zip
code 27514 who listed the “2011 Asheville AIDS Walk and
5K Run” as an interest. At this point, Jane placed a targeted
advertisement offering free information to HIV-positive
patients about a new antiretroviral treatment. If charged by
Facebook for having her ad clicked, Jane can assume with
some level of certainty that John is HIV positive.

In practice, the above issues with privacy algorithms are
very real problems. Grechanik et al. [5] found that
k-anonymity greatly degraded the test coverage of data-
centric applications. Furthermore, Brickell and Shmatikov
[6] reported experiments where achieving privacy using the
above methods “requires almost complete destruction of
the data mining capability.” They concluded that depend-
ing on the privatization parameter, the privatized data
provided no additional utility versus trivial privatization
that privatizes data by simply removing all the sensitive
attributes or all the other QIDs.

Worse, they also reported that simplistic trivial privatiza-
tion provides better privacy results than supposedly better
methods like l-diversity, t-closeness, and k-anonymity.

4 OUR APPROACH

This section describes how we use CLIFF and MORPH to
privatize datasets. As mentioned in Section 1, privatization
with CLIFF+MORPH starts with removing a certain
percentage of the original data. For our experiments, we
remove 90, 80, and 60 percent of the original data with
CLIFF (see Section 4.1). The remaining data is then
MORPHed (see Section 4.2). The result is a privatized
dataset with fewer instances, none of which could be found
in the original dataset. When we perform our CCDP
experiments, we combine multiple CLIFFed+MORPHed
datasets to create a defect predictor which is used to predict
defects in nonprivatized datasets. An example of how CLIFF
and MORPH work together is provided in Section 4.3.

4.1 CLIFF

CLIFF is an instance pruner that assumes tables of training
data can be divided into classes. For example, for a table of
defect data containing code metrics, different rows might be
labeled accordingly (defective or not defective).

CLIFF executes as follows:

. For each column of data, find the power of each
attribute subrange, i.e., how much more frequently
that subrange appears in one class more than
any other.

. In prior work [31], at this point we select the subrange
with the highest power and removed all instances
without this subrange. From the remaining instances,
those with subranges containing the second highest
power are kept while the others are removed.
This process continued until at least two instances

were left or to the point before there were zero
instances left. In this work, to control the amount of
instances left by CLIFF, we find the product of the
powers for each row, then

. Remove the less powerful rows.

The result is a reduced dataset with fewer rows. In theory,
this reduced dataset is less susceptible to privacy breaches.

Algorithm 1. Power is based on BORE [32]. First, we

assume that the target class is divided into one class as

first and the other classes as rest. This makes it easy to find

the attribute values which have a high probability of

belonging to the current first class using Bayes theorem.

The theorem uses evidence E and a prior probability P ðHÞ
for hypothesis H 2 ffirst; restg to calculate a likelihood

(hereafter, like) of the evidence selecting for one class:

likeðHjEÞ ¼ P ðEjHÞ � P ðHÞ:

This calculation is then normalized to create probabilities:

P ðfirstjEÞ ¼ likeðfirstjEÞ
likeðfirstjEÞ þ likeðrestjEÞ : ð1Þ

Jalali et al. [32] found that (1) was a poor ranking heuristic

for low frequency evidence. To alleviate this problem, the

support measure was introduced. Note that likeðfirstjEÞ is

also a measure of support since it is maximal when a value

occurs all the time in every example of one class. Hence,

adding the support term is just

P ðfirstjEÞ�supportðfirstjEÞ ¼ likeðfirstjEÞ2

likeðfirstjEÞ þ likeðrestjEÞ :

ð2Þ

To compute the power of a subrange, we first apply equal
frequency binning (EFB) to each attribute in the dataset.
EFB divides the range of possible values into n bins or
subranges, each of which holds the same number of
attribute values. However, to avoid duplicate values being
placed into different bins, boundaries of every pair of
neighboring bins are adjusted so that duplicate values
should belong to one bin only [9]. For these experiments, we
did not optimize the value for n for each dataset. We simply
used n ¼ 10 bins. In future work, we will dynamically set
the value of n for a given dataset.

Algorithm 1. Finding subrange Power.

1: Power(D, E) {D is the dataset, and E is a set of

sub-ranges for a given attribute}

2: Partition(D) 7! C {Returns data partitioned according

to the class label.}

3: PR  ; {Initialize subranges with power for each

sub-range in E}
4: for j ¼ 0 to # of class values in jCj do

5: first  Cj
6: rest  C6¼j

7: pfirst  jfirstj
jDj {Probability of first data}

8: prest  jrestj
jDj {Probability of rest data}

9: for k ¼ 0 to # of subranges in jEj do

10: like(firstjEk)  number of times Ek appears in

first � pfirst
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11: like(restjEk)  number of times Ek appears in
rest � prest

12: powerk  likeðfirstjEkÞ2
likeðfirstjEkÞþlikeðrestjEkÞ

13: PR  powerk
14: end for

15: end for

16: return PR

Next, CLIFF selects p percent of the rows in a dataset D
containing the most powerful subranges. The matrix M
holds the result of Power for each attribute, for each class in
D. This is used to help select the rows from D to produce D’
within CliffSelection.

The for-loop in Lines 3 to 9 of Algorithm 2 iterates
through attributes in D and UniqueRanges is called to find
and return the unique subranges for each attribute. Inside
that loop, at Lines 5 to 8, a nested for-loop iterates through
the unique subranges for a given attribute and Power is
called to find the power of each subrange. Finally, once the
powers are found for each attribute subrange, CliffSelection is
called to determine which rows in D will make up the final
sample in D0.

. Partition D by the class label.

. For each row in each partition, find the product of
the power of the subranges in that row.

. For each partition, return the p percent of the
partitioned data with the highest power.

An example of how CLIFF is applied to a dataset is
described in Section 4.3.

Algorithm 2. The CLIFF algorithm.

1: CLIFF(D, p) {D is the original dataset, and p is the

percentage of data to be returned}

2: M  ; {Initialize subrange power for each attribute}

3: for i ¼ 0 to # of attributes in D do

4: UniqueRangesðDiÞ7!Ri {Returns set of unique
subranges for a given attribute}

5: for j ¼ 0 to # of subranges in Ri do

6: Power(D, Ri) 7!PRj {Returns the subranges with

their powers for each class}

7: M  PRj

8: end for

9: end for

10: CliffSelection(D, p, M) 7!D0 {Returns p of the original
data}

11: return D0

4.2 MORPH

MORPH is an instance mutator that changes the numeric
attribute values of each row by replacing these original
values with MORPHed values. MORPH takes care never to
change an instance such that it moves across the boundary
between the original instance and instances of another class.

The MORPHed instances are created by applying (3) to
each attribute value of the instance

y ¼ x� ðx� zÞ � r: ð3Þ

Let x 2 D be the original row to be changed, y the
resulting MORPHed row, and z 2 D the nearest unlike
neighbor (NUN) of x. NUN is the nearest neighbor of x

whose class label is different from x’s class label (distance is
calculated using the euclidean distance). The random
number r is calculated with the property

� � r � �;

where � ¼ 0:15 and � ¼ 0:35. The values for � and � are
chosen in an effort to keep the MORPHed value close
enough to the original to maintain the utility of the dataset
but far enough to keep the original data private. Future
work will determine the optimal values for these experi-
mental parameters.

A simple hashing scheme lets us check if the new
instance y is the same as an existing instance (and we keep
MORPHing x until it does not hash to the same value as an
existing instance). Hence, we can assert that none of the
original instances are found in the final dataset.

An example of how MORPH is applied to a dataset is
described in Section 4.3.

4.3 Example of CLIFF+MORPH

For this example, we use the abbreviated version of the
ant-1.3 dataset shown in Table 2a. This dataset contains
10 attributes: one dependent attribute (class) and nine
independent attributes. Each row is labeled as 1 (containing
at least one defect) or 0 (having no defects). The first column
holds the row number and each cell contains the original
metric values.

The result of applying CLIFF+MORPH is shown in
Table 2e. To get to that point, first the original data is
binned using EFB. The result of this is shown in Table 2b.
For example, the attribute values of wmc are replaced by
two subranges of values ([3-6] and (6-14]). Here, all values
from 3 to 6 inclusive are placed in the first subrange and all
values between 6 and 14 (not including 6) are placed in the
last subrange.

Following this, each subrange is ranked according to (2).
To find the power of each subrange, we first divide the data
into first and rest. For this example, let us say that all the
rows with the 0 class label are first while the others are rest.
Fig. 2 shows an example of finding the power of (6-14] for
attribute wmc and Table 2c shows the power values for all
the subranges of Table 2b.

Next, the power of each row is calculated by finding the
product of the subrange powers of each row. In this example,
the row with the highest power for each class is selected. In
this case that is row 3 for the 0 class label and row 8 for the
1 class label. This result is shown in Table 2d.

Finally, we MORPH this result according to (3) to obtain
the result in Table 2e.

5 EVALUATION METRICS

This section assesses the privacy and utility offered by
CLIFF+MORPH.

5.1 Evaluating Utility via Classification

We say that the classification performance of a privatized
dataset is adequate if it performs no worse than the baseline
computed from the original dataset defined as follows:

For datasets in T; T1; . . . ; TjT j, performance data is
collected when a defect model is learned from the
All� Ti, then applied to Ti.
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Table 3 defines performance measures used in this work
to assess defect predictors. It also includes a new measure

used in this work called the g-measure.

. Recall, or pd, measures how many of the target
(defective) instances are found. The higher the pd,
the fewer the false negative results.

. Probability of false alarm, or pf, measures how many
of the instances that triggered the detector actually
did not contained the target (defective) concept. Like
pd, the highest pf is 100 percent; however, its
desired result is 0 percent.

. g-measure (harmonic mean of pd and 1-pf): In this
paper, we report on the g-measure. The 1-pf repre-
sents specificity (not predicting instances without

defects as defective). Specificity (1-pf) is used together
with pd to form the G-mean2 measure seen in Jiang
et al. [33]. It is the geometric mean of the pds for both
the majority and the minority class. In our case, we
use these to form the g-measure, which is the
harmonic mean of pd and 1-pf.

Other measures such as accuracy, precision, and f-measure
were not used since they are poor indicators of performance
for data where the target class is rare (in our case, the
defective instances). This is based on a study done by
Menzies et al. [34] which shows that when datasets contain
a low percentage of defects, precision can be unstable. If we
look at the datasets in Table 4, we see that the percentage of
defects is low in most cases.

5.2 Evaluating Privatization

Privacy is not a binary step function where something is
either 100 percent private or 100 percent disclosed. Rather it
is a probabilistic process where we strive to decrease the
likelihood that an attacker can uncover something that they
should not know. The rest of this section defines privacy
using a probabilistic IPR of privatized datasets.

Defining privacy. To investigate how well the original
defect data is privatized, we assume the role of an attacker
armed with some background knowledge from the original
dataset and also supplied with the private dataset. To keep
the privatized dataset truthful, Brickell and Shmatikov [6]
kept the sensitive attribute values as is and privatized only
the QIDs. However, in this work, in addition to privatizing
the QIDs with CLIFF+MORPH, we apply EFB to the
sensitive attribute to create 10 subranges of values to easily
report on the privacy level of the privatized dataset.
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TABLE 2
Example of CLIFF+MORPH: (a) The Original Data and an

Abbreviated Version of ant-1.3; (b) Data from “a” Binned Using
EFB; (c) Power Values for Each Subrange in “b”; (d) CLIFF

Result, and (e) MORPH Result

Fig. 2. Finding the power of (6-14].

TABLE 3
Some Popular Measures Used in
Software Defect Prediction Work

TABLE 4
Defect Dataset Characteristics



We propose the following privacy metric based on the

adversarial accuracy gain, Aacc, from the work of Brickell and

Shamtikov [6]. According to the authors’ definition of Aacc,

it quantifies an attacker’s ability to predict the sensitive

attribute value of a target t. The attacker accomplishes this

by guessing the most common sensitive attribute value in

hti (a QID group).
Specifically, Aacc measures the increase in the attacker’s

accuracy after he observes a privatized dataset and

compares it to the baseline from a trivially privatized

dataset that offers perfect privacy by removing either all

sensitive attribute values or all the other QIDs.
Recall that we assume that the attacker has access to a

privatized version ðT 0Þ of an original dataset ðT Þ and

knowledge of nonsensitive QID values for a specific target

in T . We refer to the latter as a query. For our experiments,

we randomly generate up to 1,000 of these queries, jQj �
1;000 (Section 6.4 describes how queries are generated).

For each query q in a setQ ¼ fq1; . . . ; qjQjg,G�i is a group of

rows from any dataset which matches qi. Hence, letGi be the

group from the original dataset andG0i be the group from the

privatized dataset which matches qi. Next, for every sensi-

tive attribute subrange in the set S ¼ fs1; . . . ; sjSjg, we denote

the idea of the most common sensitive attribute value as

smaxðG�i Þ.
Now, we define a breach of privacy as follows:

Breach
�
S;G�i

�
¼ 1; if smaxðGiÞ ¼ smax

�
G0i
�
;

0; otherwise:

�

Therefore, the privacy level of the privatized dataset is

100� IPRðT �Þ ¼ 1� 1

jQj
XjQj
i¼0

Breach
�
S;G�i

�
:

IPRðT �Þ stands for IPR and has some similarity to Aacc of

Brickell and Shamtikov [6], where IPRðT �Þ measures the

attacker’s ability to cause privacy breaches after observing

the privatized dataset T 0 compared to a baseline of the

original dataset T . To be more precise, IPRðT �Þ measures

the percent of total queries that did not cause a privacy

Breach.
We baseline our work against the original dataset (our

worst-case scenario), which offers no privacy and therefore

its IPRðT Þ ¼ 0. In our case, to have perfect privacy (our

best-case scenario), we create a privatized dataset by simply

removing the sensitive attribute values. This will leave us

with IPRðT 0Þ ¼ 1.

6 EXPERIMENTS

6.1 Data

To assist replication, our data comes from the online

PROMISE data repository [18]. Table 5 describes the

attributes of these datasets and Table 4 shows other details.

6.2 Design

From our experiments, the goal is to determine whether we

can have effective defect prediction from shared data, while

preserving privacy. To test the shared data scenario, we do

CCDP experiments for all the datasets of Table 4 in their

original state and after they have been privatized. When

experimenting with the original data, from the 10 datasets

used one is used as a test set while a defect predictor

was made from All the data in the other nine datasets. This

process is repeated for each dataset. The same process is

followed when the datasets are privatized. Each of the nine

datasets used to create a defect predictor is first privatized,

then combined into All. The test set is not privatized.
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TABLE 5
The C-K Metrics of the Datasets Used in This Work (See Table 4)

The last row is the dependent variable. Jureczko and Madeyski [35] provide more information on these metrics.



In a separate experiment to test how private the datasets
are after the privatization algorithms are applied, we model
an attacker’s background knowledge with queries (see
Section 6.4). These queries are applied to both the original
and privatized datasets. The IPRs for each privatized
dataset is then calculated (see Section 5.2).

6.3 Defect Predictors

To analyze the utility of CLIFF+MORPH, we perform
CCDP experiments with three classification techniques
implemented in WEKA [36]. These are NB [37], SVMs
[38], and NNs [39]. The default values for these classifiers in
WEKA are used in our experiments.

These three classification techniques have been widely
used for defect prediction [11], [40], [41]. Lewis [37]
describes NB as a classifier based on Baye’s rule. It is a
statistical-based learning scheme which assumes that
attributes are equally important and statistically indepen-
dent. To classify an unknown instance, NB chooses the class
with the maximum likelihood of containing the evidence in
the test case. SVMs seek to minimize misclassification
errors by selecting a boundary or hyperplane that leaves
the maximum margin between the two classes, where the
margin is defined as the sum of the distances of the
hyperplane from the closest point of the two classes [42].
According to Lessmann et al. [40], NNs depict a network
structure which defines a concatenation of weighting,
aggregation, and thresholding functions that a applied to
a software module’s attributes to obtain an approximation
of its posterior probability of being fault prone.

6.4 Query Generator

A query generator is used to provide a sample of attacks on
the data. Before discussing the query generator, a few
details must be established. First, to maintain some
“truthfulness” to the data, a selected sensitive attribute
and the class attribute are not used as part of query
generation. Here, we are assuming that the only informa-
tion an attacker could have is information about the
nonsensitive QIDs in the dataset. As a result, these attribute
values (sensitive and class) are unchanged in the privatized
dataset.

To illustrate the application of the query generator, we
use Tables 2a and 2b. First, EFB is applied to the original
data in Table 2a to create the subranges shown in Table 2b.
Next, to create a query, we proceed as follows:

1. Given a query size (measured as the number of
{attribute subrange} pairs). For this example, we use
a query size of 1.

2. Given the set of attributes A ¼ ðwmc; dit; noc; cbo;
rfc; lcom; ca; ceÞ and all their possible subranges.

3. Randomly select an attribute from A, for example,
wmc with two possible subranges (6-14] and [0-6].

4. Randomly select a subrange from all possible
subranges of wmc, for example, (6-14].

In the end, the query we generate is wmc ¼ ð6�14�.
Table 6 shows more examples of queries, their sizes, the
number, and rows they match from the dataset.

For each query size, we generate up to 1,000 queries
because it is not practical to test every possible query. With

these datasets the number of possible queries with arity 4

and no repeats is 38,760,000.3

Each query must also satisfy the following sanity checks:

. They must not include attribute value pairs from
either the designated sensitive attribute or the class
attribute.

. They must return at least two instances after a search
of the original dataset.

. They must not be the same as another query no
matter the order of the individual {attribute sub-
range} pairs in the query.

6.5 Benchmark Privacy Algorithms

To benchmark our approach, we need to compare it against

data swapping and k-anonymity. Data swapping is a

standard perturbation technique used for privacy [19],

[43], [44]. This is a permutation approach that deassociates

the relationship between a nonsensitive QID and a

numerical sensitive attribute. In our implementation of

data swapping, for each QID a certain percent of the values

are swapped with any other value in that QID. For our

experiments, these percentages are 10, 20, and 40 percent.
An example of k-anonymity is shown in Fig. 1. Our

implementation follows the Datafly algorithm [45] for

k-anonymity. The core Datafly algorithm starts with the

input of a set of QIDs, k, and a generalization hierarchy. An

example of a hierarchy is shown in the tree below using the

values of wmc from Table 2a. Values at the leaves are

generalized by replacing them with the subranges [3-6] or

(6-14]. These in turn can be replaced by [3-14]. Or the leaf

values can be suppressed by replacing them with a symbol

such as the stars at the top of the tree.

Datafly then replaces values in the QIDs according to the

hierarchy. This generalization continues until there are k or

fewer distinct instances. These instances are suppressed.
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TABLE 6
Example: Queries, Query Sizes and

the Number of Rows That Match the Queries, jGj

Table 2b is used for this example.

3. n!
k!ðn�kÞ! ¼

n
k

� �
, where n is 19 (all attributes minus the class and sensitive

attributes), and k ¼ 4. This gives 3,876 combinations. A combination (size 4
query) over variables with 10 values each (i.e., the 10 values generated by
EFB) generates a space of 104 options. Therefore, the total number of
possible queries of arity four is 104�3876 ¼ 38;760;000.



6.6 Experimental Evaluation

This section presents the results of our experiments. Before
going forward, Table 7 shows the notation and meaning of
the algorithms used in this work. The results are structured
according to the research questions presented in Section 1.

RQ1: Does CLIFF+MORPH provide better balance
between privacy and utility than other state-of-the-art
privacy algorithms?

To see whether CLIFF+MORPH offers a better balance
between privacy and utility, we privatized the original
datasets shown in Table 4 with data swapping,
k-anonymity, and CLIFF+MORPH. Then, the IPR and
g-measures are calculated for each privatized dataset. The
experimental results are displayed in Fig. 3. For each chart,
we plot IPR on the x-axis and g-measures on the y-axis.
The g-measures are based on the NB and the IPR based
on queries of size 1. There is not enough space in this
paper to repeat Fig. 3 for each query size and each
classifier used in this work (a total of nine figures).
Instead, we present IPR results for query sizes 2 and 4 in
Table 8, and g-measures for NB, SVMs, and NNs in
Tables 9, 10, and 11, respectively.

In Fig. 3, the horizontal and vertical lines show the CCDP
g-measures of the original dataset and IPR ¼ 80%, respec-
tively. To answer RQ1, we say that the privatized datasets

appearing to the right and above these lines, are private

enough (IPR over 80 percent) and performs adequately (as

good as or better than the nonprivatized data). In other

words, this region corresponds to data that provide the best

balance between privacy and utility.
Note that for most cases, 7

10 , the CLIFF+MORPH

algorithms (m10, m20, and m40) fall to the right and above

these lines. We expect this result for IPRs; however, one

may question why the g-measures are higher than those of

the original dataset in those seven cases. This is due to

instance selection done by CLIFF. Research has shown that

instance selection can produce comparable or improved

classification results [31], [46]. This makes CLIFF a perfect

compliment to MORPH. Other works on instance selection

are included in the surveys, [47], [48], [49], [50].
Of the three remaining datasets (camel-1.0, tomcat, and

xalan-2.4), all offer IPRs above the 80 percent baseline;

however, their g-measures are either as good as those of

the original dataset or worse. This is particularly true in the

case of xalan-2.4. We see this as an issue concerning the

structure of the dataset rather than the CLIFF+MORPH

algorithms themselves, considering that it performs well for

most of the privatized datasets used in this study.
Equally important is the fact that, generally, the data-

swapping algorithms are less private than the CLIFF+

MORPH algorithms and k-anonymity. This effect is seen

clearly in Fig. 3 where, all 10 datasets show the best IPRs

belonging to the CLIFF+MORPH algorithms and

k-anonymity. While the utility of data swapping and

k-anonymity are generally as good as or worse than the

nonprivatized dataset.
This summary of results also holds true when measuring

IPRs for query sizes 2 and 4 (see Table 8) and g-measures

for SVMs (see Table 10) and NNs (see Table 11).
So, to answer RQ1, at least for the defect datasets used in

this study and the baselines used, CLIFF+MORPH gener-

ally provides a better balance between privacy and utility

than data swapping and k-anonymity.
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Fig. 3. G-Measure versus IPR with query size 1 for all 10 datasets. The horizontal and vertical lines show the CCDP g-measures from the NB defect
model and IPR ¼ 80% (respectively). Note that points above and to the right of these lines are private enough (IPR over 80 percent) and performs
adequately (as good as or better than the original data).

TABLE 7
Algorithm Characteristics



RQ2: Do different classifiers affect the experimental

results?
Looking at the raw results from Tables 9, 10, and 11, the

SVM results shown in Table 10 standout for CLIFF+

MORPH and the other privacy algorithms. Here, in all

cases CLIFF+MORPH has better g-measures, while in 8
10

cases, only CLIFF+MORPH has g-measures above zero. The

privacy algorithms for NB and the NN generally show

better g-measure results than SVM.

For a substantial comparison between classifiers, we use
the Mann-Whitney U Test [51] at 95 percent confidence
for the g-measures over all datasets. The results show that
there is no significant difference in the performance of NB
and NNs. However, when g-measures from SVM are
compared to those of NB and NNs, it performs signifi-
cantly worse. Therefore, to answer RQ2, although the
results show that the NB and NN classifiers perform better
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TABLE 10
Cross-Company Experiment for 10 Datasets with SVMs:

The pds, pfs, and g-Measures Are Shown with the
g-Measures Shown in Bold

TABLE 11
Cross-Company Experiment for 10 Datasets with NNs:

The pds, pfs, and g-Measures Are Shown with the
g-Measures Shown in Bold

TABLE 8
IPR for Query Sizes 2 and 4

The numbers in bold are the highest for the different types of privacy
algorithms.

TABLE 9
Cross-Company Experiment for 10 Datasets with NB:

The pds, pfs, and g-measures Are Shown
with the g-Measures Shown in Bold



than SVM, the g-measures show that the CLIFF+MORPH
algorithms have the best performance for all three
classifiers used in this study. Therefore, based on this
result for these different types of classifiers we conclude
that the performance of CLIFF+MORPH is not dependent
on the type of classifier used.

RQ3: Does CLIFF+MORPH perform better than
MORPH?

Previous work by Peters and Menzies [7] showed that a
dataset privatized by MORPH offered at least four times
more privacy than the original dataset and comparable
utility results. In this paper, we enhance the performance of
the MORPH algorithm by first applying the instance
selector CLIFF to the original dataset.

All results in this study indicate that CLIFF+MORPH
performs better than just MORPH. This is because as
CLIFF removes the instances with the fewest power
subranges, it is getting rid of those instances which may
cause ambiguous classification. This improves utility. An
exceptional example of this can be seen in Fig. 3 with
skarbonka. When NB is use to create the defect predictor,
we see much higher g-measures for the CLIFF+MORPH
algorithms (between 60 and 80 percent), while the MORPH
algorithm has a 0 percent g-measure. This general trend of
the CLIFF+MORPH algorithms having better utility than
the MORPH algorithm can also be seen in Fig. 3 for ant-1.3,
arc, poi-1.5, redaktor, velocity-1.4, and xerces-1.2. Addition-
ally, Tables 10 and 11 confirm these results with both SVM
and NNs having greater median g-measures for the
CLIFF+MORPH algorithms than for the MORPH algo-
rithm. The best performance is shown with SVM, where
MORPH has a 0 percent median g-measure and m10 has a
median 61 percent g-measure.

Privacy is improved because we are first removing 90,
80, and 60 percent of the original data, then MORPHing the
remaining instances. The removed instances are guaranteed
100 percent protection due to their absence. By then
applying MORPH to the remaining instances, we have (in
all cases) IPRs for the CLIFF+MORPH algorithms that are
private enough (>80 percent) and greater than those for
MORPH which in most cases are not >80 percent. These
results are shown in Fig. 3 and Table 8.

7 THREATS TO VALIDITY

As with any empirical study, biases can affect the final
results. Therefore, any conclusions made from this work
must be considered with the following issues in mind:

1. Sampling bias. Threatens any classification experi-
ment, i.e., what matters there may not be true here.
For example, the datasets used here comes from the
PROMISE repository and were supplied by one
individual. The best we can do is define our methods
and publicize our data so that other researchers can
try to repeat our results and, perhaps, point out a
previously unknown bias in our analysis. Hopefully,
other researchers will emulate our methods to
repeat, refute, or improve our results.

2. Learner bias. Another source of bias in this study is
the learners used for the defect prediction studies.
Classification is a large and active field and any
single study can only use a small subset of the

known classification algorithms. In this work, only
results for NB, SVMs, and NNs are published.

3. Evaluation bias. This paper has focused on back-
ground knowledge specific to the original datasets
without regard for other types of background
knowledge which cannot be captured by the queries
used in this study, for instance, correlation knowl-
edge and knowledge about knowing information
about related files. This is a subject for future work.

4. Other evaluation bias. The utility of a privatized
dataset can be measured semantically (where the
workload is unknown) or empirically (known work-
load, e.g., classification or aggregate query answer-
ing). In this paper, we measure utility empirically for
defect prediction.

5. Comparison bias. There are many anonymization
algorithms and it would be difficult to compare the
performance of CLIFF+MORPH against all of them.
This paper compares our approach against privati-
zation methods that are known not to damage
classification; this is why we used the data swapping
(also used by Taneja et al. [43]). We also used
k-anonymity [45], a widely used privacy algorithm.

8 RELATED WORK

In this section, we address the two major components of
privacy research: 1) the privacy algorithms and 2) the
models used to measure privacy levels of these algorithms.
We also highlight privacy-preserving data mining, a closely
related field in privacy research and noise reduction, as a
side effect of the work done in this paper.

8.1 Privacy Research in Software Engineering

To the best of our knowledge, this is the first published
result where privatization does not compromise defect
prediction. However, it is closely related to privacy work
for software testing and debugging [43], [52], [53], [54].
Here, although the work uses within company data, privacy
becomes an issue when it involves outsourcing the testing
to third parties, as is the case with Budi et al. [54] and Taneja
et al. [43], or collecting user information after a software
system has been deployed [52], [53]. In the former case,
since companies do not wish to release actual cases for
testing, they anonymize the test cases before releasing them
to testers. In this situation, if the test cases are not able to
find the bugs like the original data, then the field of
outsourced testing is in danger. Similarly, CCDP can suffer
the same fate.

Work published by Castro et al. [52] sought to provide a
solution to the problem of software vendors who need to
include sensitive user information in error reports to
reproduce a bug. To protect sensitive user information,
Castro et al. [52] used symbolic execution along the path
followed by a failed execution to compute path conditions.
Their goal was to compute new input values unrelated to
the original input. These new input values satisfied the path
conditions required to make the software follow the same
execution path until it failed.

As a follow-up to the Castro et al. [52] paper, Clause and
Orso [53] presented an algorithm which anonymized input
sent from users to developers for debugging. Like Castro
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et al. [52], the aim of Clause and Orso was to supply the
developer with anonymized input which causes the same
failure as the original input. To accomplish this, they first
use a novel “path condition relaxation” technique to relax
the constraints in path conditions, thereby increasing the
number of solutions for computed conditions.

In contrast to the work done by Castro et al. [52] and
Clause and Orso [53], Taneja et al. [43] proposed PRIEST, a
privacy framework. Unlike our work, which privatizes data
randomly within NUN border constraints, the privacy
algorithm in PRIEST is based on data swapping, where
each value in a dataset is replaced by another distinct value
of the same attribute. This is done according to some
probability that the original value will remain unchanged.
An additional difference is in the privacy metric used. They
make use of a “guessing anonymity” technique that
generates a similarity matrix between the original and
privatized data. The values in this matrix are then used to
calculate three privacy metrics: 1) mean guessing anonym-
ity, 2) fraction of records with a guessing anonymity greater
than m ¼ 1, and 3) unique records which determine if any
records from the original data remain after privatization.

Work by Taneja et al. [43] followed work done by Budi et
al. [54]. Similarly, their work focused on providing
privatized data for testing and debugging. They were able
to accomplish this with a novel privacy algorithm called
kb-anonymity. This algorithm combined k-anonymity with
the concept of program behavior preservation, which guide
the generation of new test cases based on known ones and
make sure the new test cases satisfy certain properties [54].
The difference with the follow-up work by Taneja et al. [43],
is that while Budi et al. [54] replace the original data with
new data, in Taneja’s work [43] the data-swapping
algorithm maintains the original data and offers individual
privacy by swapping values.

8.2 Privacy Preserving Data Mining

Privacy-preserving data mining is a closely related area of
study for data privacy. Developing techniques that can
incorporate the privacy concern is an important area in data
mining research [55]. In their work, Agrawal and Srikant
[55] sought to answer the question of whether accurate
models can be developed without access to the precise
information in individual data records. In other words, can
accurate models be built with privatized datasets. Agrawal
and Srikant [55] answered this question by reconstructing
an estimation of the distribution of the original data. They
showed that they were able to build classifiers whose
accuracies were comparable to the accuracies of classifiers
built with the original data.

8.3 Noise Detection

This work has a side effect of noise reduction. In other work,
we have explored the effect of noise on defect data [31], [56].
Kim et al. [56] proposed a closest list noise identification
(CLNI) algorithm to reduce noise. To find noisy instances,
CLNI first for each instance finds its distance from all other
instances. These are then sorted in ascending order and the
percentage of top N instances with a different class label
from the instance is recorded. If this value is greater than a
certain threshold, then the instance has a high probability of
being a noisy instance.

9 CONCLUSION

Studies have shown that early detection and fixing of
defects in software projects is less expensive than finding
defects later on [57], [58]. Organizations with local data
can take full advantage of this early detection benefit by
doing WCDP. When an organization does not have
enough local data to build defect predictors, they might
try to access relevant data from other organizations to
perform CCDP. That access will be denied unless the
privacy concerns of the data owners can be addressed.
Current research in privacy seek to address one issue, i.e.,
providing adequate privacy for data while maintaining the
efficacy of the data. However, reaching an adequate
balance between privacy and efficacy has proven to be a
challenge since intuitively—the more the data is privatized
the less useful the data becomes.

To address this issue we present CLIFF+MORPH, a pair
of privacy algorithms designed to privatize defect datasets
for CCDP. The data is privatized in two steps: 1) instance
pruning with CLIFF, where CLIFF gets rid of irrelevant
instances thereby increasing the distances between the
remaining instances, and 2) perturbation (synthetic data
generation) with MORPH, where MORPH is able to move
the remaining instances further and create new synthetic
instances that do not cross class boundaries.

Unlike previous studies, we show in Fig. 3 that
CLIFF+MORPH 1) maintains increasing data privacy of
datasets, 2) without damaging the usefulness of the data for
defect prediction. Note that this is a significant result since
prior work with the standard privatization technologies
could not achieve those two goals.

We hope that this result encourages more data sharing,
more cross-company experiments, and more work on
building SE models that are general to large-scale systems.

Our results suggest the following future work:

. The experiments of this paper should be repeated on
additional datasets.

. The current NUN algorithm used in MORPH is
OðN2Þ. We are exploring ways to optimize that with
some clustering index method (e.g., k-means).

. While Fig. 3 shows that we can increase privacy, it
also shows that we cannot 100 percent guarantee it.
At this time, we do not know the exact levels of
privacy required in industry or if the results of Fig. 3
meet those needs. This requires further investigation.

. Currently, we use the MORPH algorithm with set
experimental parameter values (� and �). Further
investigation is needed to determine the optimal
values for these parameters.

. This work focused on showing how to prevent an
attacker from associating a target t to a single
sensitive attribute value. We are exploring ways to
show how a dataset with multiple sensitive attri-
butes can be adequately privatized.

. In the study of data privacy, modeling the attacker’s
background knowledge is important to determine
how private a dataset is. In this paper, we only
focused on background knowledge specific to the
original datasets. Other types of background
knowledge need to be considered.
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