
Interactive Fault Localization
Leveraging Simple User Feedback

Liang Gong1, David Lo2, Lingxiao Jiang2, and Hongyu Zhang1

F u n d e d b y

1 Tsinghua University

2 Singapore Management University

• Interactive Fault Localization
• Technical Motivation
• Detailed Approach

• Motivation
• Fault Localization

• Experiments
• Settings & Results

Interactive Fault Localization
Leveraging Simple User Feedback

Outline
Introduction &

Framework

• Conclusion & Future work

 Software errors cost the US economy
 59.5 billion dollars (0.6% of 2002's GDP) [1]

 Testing and debugging activities are
 labor-intensive (30% to 90% of a Project) [2]

Diversity Maximization Speedup
for Fault Localization

Debugging
Problem

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

[1] National Institute of Standards and Technology (NIST). Software Errors Cost
 U.S. Economy $59.5 Billion Annually, June 28, 2002.

[2] B. Beizer. Software Testing Techniques. International Thomson Computer
 Press, Boston, 2nd edition, 1990.

Interactive Fault Localization
Leveraging Simple User Feedback

Presenter
Presentation Notes
This is debugging session, and I think most of you knows the importance of debugging. Software errors cost the US economy almost 60 billion dollars per year.Software testing and debugging activities are often labor-intensive, accounting for 30% to 90% of labor spent for a Project. So establishing sufficient testing and debugging infrastructure can help reduce the cost.

Spectrum-based Fault Localization(abbr. SBFL)
• Automatically recommend a list of suspicious
 program elements for inspection.

• Program Spectra consists of coverage information
 and execution labels.

Program Spectra

Coverage information of one
element (si) in all executions

Profile of an execution trace

Correct or incorrect?

Diversity Maximization Speedup
for Fault Localization

SBFL
Introduction

Interactive Fault Localization
Leveraging Simple User Feedback

Presenter
Presentation Notes
Spectrum-based fault localization is a kind of technique that automatically recommend a list of suspicious program elements for manual inspection. It automatically analyzes program spectra which consists of coverage information of program elements during the execution.<click>A program spectra often consists of two parts: the coverage profile on the left side, and the column indicating the execution status on the right side.<click>Each row represents the coverage profile of an execution trace.<click>And each column represents the coverage information of one program element in all executions.<click>The execution status column records whether the executions are correct or incorrect.Empirical studies (e.g., [24, 18]) show that such techniques can beeffective in guiding developers to locate faults. Parninet al. conduct a user study [27] and show that by usinga fault localization tool, developers can complete a tasksignificantly faster than without the tool on simpler code.However, fault localization may be much less useful forinexperienced developers.

Ochiai

Tarantula

Jaccard

Diversity Maximization Speedup
for Fault Localization

Approaches
Fault Localization

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

No. of failed traces covering S

No. of failed traces No. of traces covering S

For a given statement S
The formula calculates the suspiciousness of S.

Intuition: If S is covered more in failed traces
and less in passed traces, it is more likely to
contain faults.

Interactive Fault Localization
Leveraging Simple User Feedback

Presenter
Presentation Notes
Here we list three frequently cited fault localization methods, namely, Tarantula, Ochiai, and Jaccard.Let’s take a look at Ochiai.<click>So <click>For a given statement S, <click> the formula calculates the suspiciousness of S.The numerator counts the number of S covered in failed traces <click>And The denominator consists of <click> the total number of failed traces in the spectra and <click> the number of traces covering S.<click> The intuition is quite simple, If a statement is covered more in failed traces and less in passed traces, it is more likely to contain the fault.

No feedback from human is utilized.

Diversity Maximization Speedup
for Fault Localization

Process
Motivation

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback

Batch Mode Fault Localization

Developer

Fault Localization
Techniques

Static List of
Suspicious Elements

Program Spectra Research Goal:

• An interactive fault localization
method leveraging user feedback

• Requires trivial or no additional effort

Diversity Maximization Speedup
for Fault Localization

Our Method
Introduction

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

• Interactively and iteratively updates
model according to feedback

• Leveraging only simple feedback

• one-size-fits-all approach

FaulT LocAlization Leveraging
User FeedbacK (TALK)

Interactive Fault Localization
Leveraging Simple User Feedback

Diversity Maximization Speedup
for Fault Localization

Process
Motivation

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback

Interactive Fault Localization

Developer

Fault Localization
Techniques

Interactive List of
Suspicious Elements

Feedback Program Spectra

Diversity Maximization Speedup
for Fault Localization

Feedback
Opportunities

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback

Program Element No.

Commit

Buggy? Susp.
other += 1;}

else if(isprint(c))
let += 1;

else if('0'<=c && '9'>c)
if('A'<=c && 'Z'>=c)

S12
S11
S8
S9
S5

0.756
0.707
0.671
0.667
0.603

How to provide feedback which
requires trivial additional effort?

When developer examine the inspection list, they
must judge if those statements are clean or faulty.

Conventional Inspection List (static) Proposed Inspection List (interactive)

Diversity Maximization Speedup
for Fault Localization

Feedback
How to utilize ?

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback With provided feedback, how to improve

fault localization accuracy?

Program Element No. Buggy? Susp.
other += 1;} S12 0.756

else if(isprint(c))
let += 1;

else if('0'<=c && '9'>c)

S11
S8
S9

0.707
0.671
0.667

Once a false positive(symptom) has been found

Find the likely root cause for that symptom

if('A'<=c && 'Z'>=c) S5 0.603

likely root cause

Adjust the suspiciousness of root cause and re-rank

Diversity Maximization Speedup
for Fault Localization

Root Cause
How to find ?

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback How to find the likely root cause of a symptom?

Investigating co-occurrences of program elements in
failed executions to identify root cause candidate

… s1 s2 s3 s4 s5 s6 … p/f

… … fail
… … fail
… … pass

t1
t2

False positive (Symptom)

Intuition: If s3 has been identified as false positive,
then s2 is more likely to be the root cause than s1.
As s2 co-appears more with s3 in failed traces.

t3

Diversity Maximization Speedup
for Fault Localization

Rule: R1
Detailed Approach

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback Identifying a Root Cause from Its Symptom.

• Evaluate the co-appearance score of
 statements (root cause candidate)

Intuition: Statements co-appeared more with
symptom in failed traces covering less statements
are more likely to be chosen as the root cause.

• Select candidate with most co-appearance score
 as the root cause

Co-appearance from traces covering
less statements weights higher

Diversity Maximization Speedup
for Fault Localization

Test Case
Prioritization

introduction

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

With the spectra T and symptom S, and how to adjust
the suspiciousness score of the root cause Sr ?

Spectra T(Sr)

Spectra T

Spectra T(Sr)

Suspiciousness
of Symptom: fT(Sr)(s)

Suspiciousness
of Symptom: fT(Sr)(s)

split

Consists of all traces covering root cause Sr

Consists of all traces
not covering root cause Sr

If Sr is the real root cause,
then fT(Sr)(s) be very HIGH.

If Sr is the real root cause,
then fT(Sr)(s) be very LOW

fT(Sr)(s) - fT(Sr)(s)

The larger this metric is,
the more suspiciousness

score Sr will get.

Diversity Maximization Speedup
for Fault Localization

Rule: R1
Detailed Approach

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback With the symptom, how to adjust the

suspiciousness score of the root cause?

• Calculate the suspiciousness difference of symptom
 in spectra covering and not covering root cause.

• Contribute the suspiciousness difference of symptom
 to the suspiciousness of its root cause

Intuition: If the suspiciousness of symptom becomes
larger when root cause is covered, the root cause is
more suspicious.

Diversity Maximization Speedup
for Fault Localization

Rule 2
Introduction

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback Focusing on a Single Failed Execution Profile

 … s1 s2 s3 s4 s5 s6 … p/f

… … fail
… … fail
… … pass

t1
t2
t3

In this case, focusing on statements covered by
t1 will quickly identify at least one bug. As only
two statements have to be examined.

• Find out the failed profile tmin covering
 the least number of unexamined elements.

• For each program element si that is covered in tmin

A constant making sure that statements
covered by tmin are examined first.

Diversity Maximization Speedup
for Fault Localization

Overall
Algorithm
Introduction

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback

Initial Process: Conventional
Fault Localization

Processing
Feedback

Processing
False Positive

with Rule 1

If a bug has been confirmed,
record it for Rule 2

Apply Rule 2

Diversity Maximization Speedup
for Fault Localization

Experiment
Dataset &

Evaluation Metric

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

1 Siemens Suite 2 UNIX Programs

1

2

Evaluation Metric for Fault Localization:

Benchmarks for Fault Localization
Interactive Fault Localization

Leveraging Simple User Feedback

Diversity Maximization Speedup
for Fault Localization

Experiment
Research Questions

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback

Is user feedback helpful for improving
fault localization accuracy?

What is the relative effectiveness
of the two rules to improve fault
localization?

Research Questions Investigated:

Diversity Maximization Speedup
for Fault Localization

Comparison
Introduction

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback Conventional Fault Localization Technique f

 Interactive Fault Localization Technique f+
 f+ vs f f+ requires 40% less debugging cost

than f on faulty version 4

f+ requires 30% more debugging cost
than f on faulty version 2

Diversity Maximization Speedup
for Fault Localization

Test Case
Prioritization

introduction

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Improvement of TALK on Existing Methods

Ochiai+ vs Ochiai Jaccard+ vs Jaccard Tarantula+ vs Tarantula

Pair-wised T-test shows the improvements are
statistically significant at 95% interval.

Diversity Maximization Speedup
for Fault Localization

Experiment
Research Questions

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Research Questions Investigated:

Interactive Fault Localization
Leveraging Simple User Feedback

Is user feedback helpful for improving
fault localization accuracy?

What is the relative effectiveness
of the two rules to improve fault
localization?

Diversity Maximization Speedup
for Fault Localization

Test Case
Prioritization

introduction

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Contributions of R1 and R2
on Improving Fault Localization Effectiveness

Improvement from R1
Improvement from R2

Improvement from R1 + R2

Diversity Maximization Speedup
for Fault Localization

Related Works
Introduction

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Fault Localization (state-of-the-arts)
 WHITHER[Renieris and Reiss]
 Liblit05[Liblit]
 Delta Debugging[Zeller]
 Tarantula[Harrold], Ochiai etc.

Interactive Fault Localization
Hao et al. propose an technique [JCST]
 Record sequential execution trace
 Judge whether the fault is executed before or after

the checking point.

Lucia et al. adopt user feedback for clone-based bug
detection approaches [ICSE 12]
Insa et al. propose a strategy for algorithmic
debugging which asks user questions concerning
program state. [ASE 11]

Interactive Fault Localization
Leveraging Simple User Feedback

Diversity Maximization Speedup
for Fault Localization

Threats to
Validity

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Construct Validity (Evaluation Metric)
We use a cost metric that has been utilized to
evaluate past fault localization techniques. We
believe this is a fair and well-accepted metric.

Interactive Fault Localization
Leveraging Simple User Feedback

External Validity (Generalizability)
All of subjects are written in C. In the future,
we plan to investigate more programs written
in various programming languages.

What if user provides a wrong feedback?

Diversity Maximization Speedup
for Fault Localization

Threats to
Validity

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

Interactive Fault Localization
Leveraging Simple User Feedback

What if user provides a wrong feedback?

Since we use simple feedbacks,
mistakes can only be:

 Clean Statement labeled as Faulty
In this case, when developers try to fix the
“bug”, they will realize their mistake.

 Faulty Statement labeled as Clean
Most fault localization techniques are evaluated
by assuming a user is always correct when
ascertaining if an element is buggy or correct.

In future: Allow users to rollback their
feedback if they made mistakes.

Diversity Maximization Speedup
for Fault Localization

Conclusion
& Future Work

P r e s e n t e d b y

Liang Gong
School of Software
Tsinghua University

• Future Work
• Evaluate on more subject programs.

• Try different strategies to further utilize user feedback

• Enhance TALK by allowing users to rollback their
feedback if they made mistakes

• Conclusions
A novel interactive method TALK for fault localization:
 TALK leverages user feedback while limits the
additional manual cost incurred.

 TALK is a one-size-fits-all approach that can be
applied to most existing static SBFL techniques.

 Empirical studies on 12 C programs shows that TALK
can help to significantly improve the fault localization
accuracy.

Interactive Fault Localization
Leveraging Simple User Feedback

Thank you!

• Any questions?

. . .

	Interactive Fault Localization Leveraging Simple User Feedback�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

