
JITProf: Pinpointing JIT-Unfriendly JavaScript Code

Liang Gong1, Michael Pradel2, and Koushik Sen1

1 EECS Department, University of California, Berkeley, USA
2 Department of Computer Science, TU Darmstadt, Germany,

1 {gongliang13, ksen}@cs.berkeley.edu,
2 michael@binaervarianz.de

ABSTRACT
Most modern JavaScript engines use just-in-time (JIT) com-
pilation to translate parts of JavaScript code into efficient
machine code at runtime. Despite the overall success of JIT
compilers, programmers may still write code that uses the
dynamic features of JavaScript in a way that prohibits prof-
itable optimizations. Unfortunately, there currently is no
way to measure how prevalent such JIT-unfriendly code is
and to help developers detect such code locations. This pa-
per presents JITProf, a profiling framework to dynamically
identify code locations that prohibit profitable JIT optimiza-
tions. The key idea is to associate meta-information with
JavaScript objects and code locations, to update this infor-
mation whenever particular runtime events occur, and to use
the meta-information to identify JIT-unfriendly operations.
We use JITProf to analyze widely used JavaScript web ap-
plications and show that JIT-unfriendly code is prevalent in
practice. Furthermore, we show how to use the approach as
a profiling technique that finds optimization opportunities
in a program. Applying the profiler to popular benchmark
programs shows that refactoring these programs to avoid
performance problems identified by JITProf leads to statis-
tically significant performance improvements of up to 26.3%
in 15 benchmarks.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Testing tools, Debugging aids, Monitors, Tracing

Keywords
JavaScript, profiler, JITProf, dynamic analysis, just-in-time
compilation, Jalangi

1. INTRODUCTION
JavaScript is the most widely used client-side language

for writing web applications. It is also getting increasingly
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popular on mobile and desktop platforms. To further im-
prove performance, modern JavaScript engines use just-in-
time (JIT) compilation [13, 18, 8, 4], which translates and
optimizes JavaScript code into efficient machine code while
the program executes.

Despite the overall success of JIT compilers, programmers
may write code using JavaScript dynamic features in a way
that prohibits profitable JIT optimizations. We call such
JavaScript code JIT-unfriendly code. Previous research [39]
shows that programmers extensively use those dynamic fea-
tures, including dynamic addition and deletion of object
properties. However, an important premise for effective JIT
optimization is that programmers use the dynamic features
of JavaScript in a regular and systematic way. For code that
satisfies this premise, the JavaScript engine generates and
executes efficient machine code. Otherwise, the engine must
fall back to slower code or to interpreting the program, which
can lead to significant performance penalties, as noticed by
developers [2, 3, 1].

Even though there is evidence that JIT-unfriendly code
exists, there currently is no way to identify JIT-unfriendly
code locations and to measure how prevalent the problem
is. Addressing these challenges helps improving the per-
formance of JavaScript programs in two ways. First, a
technique to identify JIT-unfriendly code locations in a pro-
gram helps application developers to avoid the problem.
Specialized profilers for other languages and performance
problems [28, 47, 32] show that pinpointing developers to
optimization opportunities is valuable. Second, empirical
evidence on the prevalence of JIT-unfriendly code helps de-
velopers of JavaScript engines to focus their efforts on the
most important patterns of JIT unfriendliness. Recent work
shows that small modifications in the JavaScript engine can
have a dramatic impact on performance [4].

This paper addresses the challenge of identifying and mea-
suring JIT-unfriendliness through a dynamic analysis, called
JITProf, that identifies code locations that prohibit prof-
itable JIT optimizations. The key idea is to identify poten-
tially JIT-unfriendly operations by analyzing runtime execu-
tion patterns and to report code locations that could poten-
tially cause slowdown. JITProf associates meta-information
with JavaScript objects and code locations, updates this
information whenever particular runtime events occur, and
uses the meta-information to identify JIT-unfriendly oper-
ations. For example, JITProf tracks hidden classes and
inline cache misses, which are two important concepts in
JIT optimization, by associating a hidden class with every
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JavaScript object and a cache-miss counter with every code
location that accesses an object property.

A key advantage of our approach is that it does not hard-
code a set of checks for JIT unfriendliness into a particular
JavaScript engine but instead provides an extensible, engine-
independent framework for checking various JIT-unfriendly
code patterns. We implement JITProf as an open-source
prototype framework that instruments JavaScript code by
source-to-source transformation, so that the instrumented
code identifies JIT-unfriendly code locations at runtime. We
instantiate the JITProf framework for seven JIT-unfriendly
code patterns that cause performance problems in the Fire-
fox and Chrome browsers. Supporting additional patterns
does not require detailed knowledge of the internals of a JIT
compiler. Instead, understanding the JIT-unfriendly code
pattern at a high-level is sufficient to write JavaScript code
that use JITProf’s API. This user-level extensibility is im-
portant because JIT compilers evolve rapidly and different
JIT compilers employ different optimizations.

We apply JITProf in two ways. First, we conduct an em-
pirical study involving popular websites and benchmarks to
understand the prevalence of JIT-unfriendly code patterns
in practice. We find that JIT unfriendliness is common in
both websites and benchmarks, and we show the relative
prevalence of different JIT-unfriendly code patterns. Our
results suggest that work on addressing these code patterns
by modifying the applications is worthwhile.

Second, we apply the JITProf approach as a profiling
technique to find optimization opportunities in a program
and evaluate whether using these opportunities improves the
program’s performance. We show that JITProf effectively
detects various JIT-unfriendly code locations in the Sun-
Spider and Octane benchmarks, and that refactoring these
locations into JIT-friendly code yields statistically signifi-
cant improvements of execution time in 15 programs. The
improvements, which range between 1.1% and 26.3%, exist
in Firefox and Chrome, both of which are tuned towards the
analyzed benchmarks.

To reduce the runtime overhead that a naive implemen-
tation of JITProf imposes, we present a sampling technique
that dynamically adapts the profiling effort for particular
functions and instructions. With sampling, we reduce the
overhead of JITProf from an average of 627x to an average
overhead of 18x, while still finding all optimization oppor-
tunities that are detected without sampling.

In summary, this paper contributes the following:

• We present JITProf, an engine-independent and ex-
tensible framework that analyzes runtime information
to pinpoint code locations that reduce performance
because they prohibit effective JIT optimization.

• We use JITProf to conduct an empirical study of JIT-
unfriendly code, showing that it is prevalent both in
websites and benchmarks.

• We use JITProf as a profiler that pinpoints JIT-related
optimization opportunities to the developer, and show
that the approach finds valuable optimization opportu-
nities in 15 out of 39 JavaScript benchmark programs.

• We make our implementation available as open-source
(BSD license) to provide a platform for future research:
https://github.com/Berkeley-Correctness-Group/JITProf

2. APPROACH
This section describes JIT-unfriendly patterns known to ex-
ist in state-of-the-art JavaScript engines and presents our
approach to detect occurrences of these patterns.

2.1 Framework Overview
We design JITProf as an extensible framework that pro-

vides a reusable API that accommodates not only today’s
but also future JIT unfriendly code patterns. A generic
approach is crucial because JavaScript engines are a fast-
moving target. The API, summarized in Table 1, defines
functions that profilers can implement and that are called
by the framework, as well as functions that the profilers
can call. JITProf’s design is motivated by four recurring
properties of JIT-unfriendly code patterns from which we
derive requirements for profilers to detect them.
Runtime Events: All patterns are related to particular
runtime events and profilers need a way to keep track of
these events. JITProf supports a set of runtime events
for which profilers can register. At every occurrence of a
runtime event, the framework calls into the profiler and the
profiler can handle the event. The upper part of Table 1
lists the runtime events that profilers can register for. For
example, a profiler can implement the getProp() function,
which gets called on every property read operation during
the execution. Our implementation supports more runtime
events than the events listed in Table 1; for brevity, we
focus on events needed for the seven JIT-unfriendly patterns
described in this paper.
Associate Shadow Information: Some patterns are re-
lated to particular runtime objects and profilers need a way
to associate shadow information (meta-information invisi-
ble to the program under analysis) with objects. JITProf
enables profilers to attach arbitrary objects to objects of
the program under test. v.meta allows profilers to access
the shadow-information associated with a particular run-
time value v. Moreover, patterns are related to particular
code locations and profilers need a way to associate shadow-
information with locations. JITProf enables profilers to
attach arbitrary information to code locations through the
l.meta function, which returns the shadow-information as-
sociated with a location l. In addition, JITProf enables pro-
filers to keep track of how often a code location is involved in
a JIT-unfriendly operation, which we find to be an effective
way to identify JIT-unfriendly locations. Therefore, JITProf
associates a zero-initialized counter with locations that may
execute a JIT-unfriendly operation. We call this counter
the unfriendliness counter. Whenever a profiler observes a
JIT-unfriendly operation, it increments the unfriendliness
counter of the operation via the incrCtr() function.
Prioritize JIT-unfriendly Code: Profilers need a way to
prioritize potentially JIT-unfriendly code locations, e.g., to
help developers focus on the most promising optimization
opportunities. JITProf provides a default ranking strategy
that reports locations sorted by their unfriendliness counter
(in descending order). Unless otherwise mentioned, the pro-
filers described in this paper use the default ranking strategy.
Sampling: Profiling for JIT-unfriendly code locations in a
naive way can easily cause very high overhead, even for pro-
grams that do not suffer from JIT-unfriendliness. To reduce
the overhead, JITProf uses a sampling strategy that adapts
the profiling effort to the amount of JIT-unfriendliness ob-
served at a particular location (Section 2.3).
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Table 1: The runtime event predicates captured and
analyzed in JITProf.

Function Description

Functions that profilers can implement:

newObj(l, v) A new object v is created at location l
getProp(l, base,
p, result)

Value results is read from property p of
object base at location l

putProp(l, base, p, v) Value v is written to property p of object
base at location l

unary(l, op, v, result) Unary operation op applied to value v yields
value results at location l

binary(l, op,
v1, v2, result)

Binary operation op applied to values v1
and v2 yields value results at location l

invokeFun(l, f,
base, args, result)

Function f of object base is called with
arguments args and yields value results at
location l

Functions that profilers can call:

v.meta Shadow-information associated with run-
time value v

l.meta Shadow-information associated with loca-
tion l

incrCtr(l) Increment the unfriendliness counter of
location l

1 function f(a,b){return a+b ;}
2

3 for(var i=0;i<5000000;i++){
4 var arg1, arg2;
5 if (i % 2 === 0) {
6 a = 1; b = 2;
7

8 } else {
9 a = ’a’; b = ’b’;

10

11 }
12 f(a, b);
13 }

function f(a,b){return a+b;}
function g(a,b){return a+b;}
for(var i=0;i<5000000;i++){
var arg1, arg2;
if (i % 2 === 0) {

a = 1; b = 2;
f(a, b);

}else {
b = ’a’; b = ’b’;
g(a, b);

}

}

The highlighted code on the left pinpoints the JIT-unfriendly code
location. The highlighted code on the right shows the difference of
the improved code to the code on the left.

Figure 1: Example of polymorphic operation (left)
and improved code (right).

2.2 Patterns and Profilers
This section describes JIT-unfriendly code patterns and the
detection of their occurrences by instantiating the JITProf
framework. Table 2 summarizes the profilers that detect
these patterns.

2.2.1 Polymorphic Operations
A common source of JIT-unfriendly behavior are code

locations that apply an operation to different types at dif-
ferent executions of the location. We call such operations
polymorphic operations.
Micro-benchmark We illustrate each JIT-unfriendly code
pattern with a simple example. The plus operation at line 1
of Figure 1 operates on both numbers and strings. The
performance of the example can be significantly improved
by splitting f into a function that operates on numbers and
a function that operates on strings, as shown on the right of
Figure 1. The modified code runs 92.1% and 72.2% faster
in Firefox and Chrome, respectively.
Explanation This change enables the JavaScript engine to
execute specialized code for the plus operation because the
change turns a polymorphic operation into two monomor-
phic operations, i.e., operations that always execute on the
same types of operands. For example, the JIT compiler can
optimize the monomorphic plus at line 1 of the modified

1 var x, y, rep=300000000;
2 for(var i=0;i<rep;i++){

3 y = x | 2 ;

4 }

var x = 0, y, rep=300000000;
for(var i=0;i<rep;i++){
y = x | 2;

}

Figure 2: Example for a binary operation on
undefined (left) and improved code (right).

example into a few quick integer instructions and inline
these instructions at the call site of f. In contrast, the JIT
compiler does not optimize the original code because the
types of operands change every time line 1 executes.
Profiling To detect performance problems caused by poly-
morphic operations, Profiler PO in Table 2 tracks the types
of operands involved in unary and binary operations. The
profiler maintains for each code location that performs a
unary or binary operation the most recently observed type(s)
lastType1 (and lastType2) of the left (and right) operand.
Whenever the program performs a binary operation, the
profiler checks whether the types of the operands match
lastType1 and lastType2. If at least one of the current
types differs from the respective stored type, then the pro-
filer increments the unfriendliness counter, and it updates
lastType1 and lastType2 with the current types. The pro-
filer performs similar checks for unary operations.

To rank locations for reporting, the profiler combines the
framework’s default ranking with an estimate of how prof-
itable it is to fix a problem. For this estimate, the profiler
maintains for each location a histogram of observed types.
The histogram maps a type or pair of types to the number of
times that this type has been observed. The profiler reports
all code locations with a non-zero unfriendliness counter,
ranked by the sum of the counter and the number (we call
it C2) of occurrences of the second most frequently observed
type at the location. This approach is a heuristic to break
ties when multiple locations have similar numbers of JIT-
unfriendly operations. The rationale is that the location
with a larger C2 is likely to be more profitable to fix be-
cause making the two most frequent types consistent can
potentially avoid more JIT-unfriendliness.

For the example in Figure 1, the profiler warns about the
polymorphic operation at line 1 because the types of its
operands always differ from the previously observed types.

2.2.2 Binary Operation on undefined

Performing binary operations, such as +, -, *, /, %, |, and
& on undefined values (which has well-defined semantics
in JavaScript), degrades performance compared to applying
the same operations on defined values.
Micro-benchmark The code on the left of Figure 2 reads
the undefined value from x and implicitly converts it into
zero. Modifying this code so that x is initialized to zero
preserves the semantics and improves the performance by
1.8% and 82.8% in Firefox and Chrome, respectively.
Explanation The original code prevents the JavaScript en-
gine from executing code specialized for numbers. Instead,
the engine falls back on code that performs additional run-
time checks and that coerces undefined into a number.
Profiling To detect performance problems caused by bi-
nary operations with undefined operands, Profiler BOU
in Table 2 tracks all binary operations and increments the
unfriendliness counter whenever an operation operates on an
undefined operand.
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Table 2: Profilers to find JIT-unfriendly code locations.

Runtime event Action

(PO) Polymorphic Operations:

unary(l, ∗, v, ∗) if (type(v) 6= l.meta.lastType) then incrCtr(l)
l.meta.lastType← type(v)
l.meta.histo.add(type(v))

binary(l, ∗, v1, v2, ∗) if (type(v1) 6= l.meta.lastType1 ∨ type(v2) 6= l.meta.lastType2) then incrCtr(l)
l.meta.lastType1← type(v1)
l.meta.lastType2← type(v2)
l.meta.histo.add(type(v1), type(v2))

(BOU) Binary Operations on undefined:

binary(l, ∗, v1, v2, ∗) if v1 = undefined ∨ v2 = undefined then incrCtr(l)

(NCA) Non-contiguous Arrays:

putProp(l, base, prop, ∗) if isArray(base) ∧ isNumber(prop) ∧ (prop < 0 ∨ prop > base.length) then incrCtr(l)

(UAE) Accessing Undefined Array Elements:

getProp(l, base, prop, ∗) if (isArray(base) ∧ isNumber(prop) ∧ prop /∈ base then incrCtr(l)

(NNA) Storing Non-numeric Values in Numeric Arrays:

newObject(l, v) if isArray(v) then if containsNonNumeric(v) then v.meta.state← NON
else if allNumeric(v) then v.meta.state← NUM
else v.meta.state← UNK

putProp(l, base, prop, v) oldState← l.meta
updateState(base.meta, v)
if oldState = NUM ∧ base.meta.state = NON then incrCtr(l)

(IOL) Inconsistent Object Layouts (“HC” means hidden class):

newObject(l, v) v.meta← getOrCreateHC(v)

putProp(l, base, p, v) base.meta← getOrCreateHC(v)
if base.meta 6= l.meta.cachedHC ∨ p 6= l.meta.cachedProp then incrCtr(l)
l.meta.cachedHC ← base.meta
l.meta.cachedProp← p
l.meta.histo.add(base.meta)

getProp(l, base, p, ∗) if base.meta 6= l.meta.cachedHC ∨ p 6= l.meta.cachedProp then incrCtr(l)
l.meta.cachedHC ← base.meta
l.meta.cachedProp← p
l.meta.histo.add(base.meta)

(GA) Unnecessary Use of Generic Arrays:

newObject(l, v) if isArray(v) then v.meta← initArrayMetaInfo()

putProp(∗, base, prop, v) if isArray(base) then updateTypeF lags(base.meta, prop, v)

unary(∗, op, v, ∗) if isArray(v) ∧ op = ”typeof” then setF lag(v.meta, ”typeof”)

invokeFun(∗, f, base, ∗, ∗) if isArray(base) then setBuiltinsUsed(v.meta, f)

1 for (var j=0; j<400; j++) {
2 var array = [];
3 for (var i=5000;i>=0;i--){
4 array[i] = i;
5 }
6 }

for (var j=0; j<400; j++) {
var array = [];
for(var i=0;i<=5000;i++){

array[i] = i;
}

}

Figure 3: Example of non-contiguous arrays (left)
and improved code (right).

For the example in Figure 2, the profiler warns about
line 3 because the first operand of the operation is frequently
observed to be undefined.

2.2.3 Non-contiguous Arrays
In JavaScript, arrays can have“holes”, i.e., the elements at

some indexes between zero and the end of the array may be
uninitialized. Such non-contiguous arrays cause slowdown.
Micro-benchmark The code on the left of Figure 3 initial-
izes an array in reverse order so that every write at line 4
is accessing a non-contiguous array. Modifying this code so
that the array grows contiguously leads to an improvement
of 97.5% and 90.2% in Firefox and Chrome, respectively.
Explanation Non-contiguous arrays are JIT-unfriendly for
three reasons. First, JavaScript engines use a slower im-

plementation for non-contiguous arrays than for contiguous
arrays. Dense arrays, where all or most keys are contiguous
starting from zero, use linear storage. Sparse arrays, where
keys are non-contiguous, are implemented as hash tables,
and looking up elements is relatively slow. Second, the
JavaScript engine may change the representation of an array
if its density changes during the execution. Third, JIT
compilers speculatively specialize code under the assumption
that arrays do not have holes and fall back on slower code
if this assumption fails [19].
Profiling To detect performance problems caused by non-
contiguous arrays, Profiler NCA in Table 2 tracks for each
property-setting code location how often a code location
makes an array non-contiguous. For each put property op-
eration where the base is an array and where the property
is an index, the profiler checks whether the index is less
than 0 or greater than the length of the array. In this case,
the operation inserts an element that makes the array non-
contiguous and the profiler increments the unfriendliness
counter.

For the example in Figure 3, the profiler warns about line 4
because it transforms the array into a non-contiguous array
every time the line is executed.
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1 var array = [], sum = 0;
2 for(var i=0;i<100;i++)
3 array[i] = 1;
4 for(var j=0;j<100000;j++) {
5 var ij = 0;
6 var len = array.length;
7 while ( array[ij] ) {
8 sum += array[ij]
9 ij++;

10 }
11 }

var array = [], sum = 0;
for(var i=0;i<100;i++)
array[i] = 1;

for(var j=0;j<100000;j++) {
var ij = 0;
var len = array.length;
while (ij < len) {

sum += array[ij];
ij++;

}
}

Figure 4: Accessing undefined array elements.

1 var array = [];
2 for(var i=0;i<10000000;i++)
3 array[i] = i/10;
4 array[4] = "abc";
5 array[4] = 1.23;

var array = [];
for(var i=0;i<10000000;i++)
array[i] = i/10;

array[4] = 3;
array[4] = 1.23;

Figure 5: Example of storing non-numeric values
into numeric arrays.

2.2.4 Accessing Undefined Array Elements
Another array-related source of inefficiency is accessing an

uninitialized, deleted, or out of bounds array element.
Micro-benchmark The code in Figure 4 creates an array
and repeatedly iterates through it. The original code on
the left checks whether it has reached the end of the array
by checking whether the current element is defined, i.e., the
code accesses an uninitialized array element each time it
reaches the end of the while loop. The modified code on the
right avoids accessing an undefined element, which improves
performance by 73.9% and 70.2% in Firefox and Chrome,
respectively.
Explanation Similar to Section 2.2.3.
Profiling To find performance problems caused by accessing
undefined array elements, Profiler UAE in Table 2 tracks
all operations that read array elements. The unfriendli-
ness counter represents how often a code location reads an
undefined array element. The profiler checks for each get
property operation that reads an array element from base
whether the property prop is an index if the array. If the
check fails, the program accesses an undefined array element,
and the profiler increments the unfriendliness counter.

For the example in Figure 4, the profiler warns about line 7
because it reads an undefined array element every time the
while loop terminates.

2.2.5 Storing Non-numeric Values in Numeric Arrays
JavaScript arrays may contain elements of different types.

For good performance, programmers should avoid storing
non-numeric values into an otherwise numeric array.
Micro-benchmark The code on the left of Figure 5 cre-
ates a large array of numeric values and then stores a non-
numeric value into it. The modified code avoids storing a
non-numeric value, which improves performance by 14.9%
and 83.8% in Firefox and Chrome, respectively.
Explanation If a dense array contains only numeric val-
ues, such as 31-bit signed integers1 or doubles, then the
JavaScript engine can represent the array efficiently as a
fixed sized C-like array of integers or doubles, respectively.
Changing the representation of the array from a fixed-sized

1Both the Firefox and the Chrome JavaScript engine use
tagged integers [7], where 31 bits represent a signed integer
and the remaining bit indicates its type (integer or pointer).

1 function C(i) {
2 if (i % 2 === 0) {
3 this.a = Math.random();
4 this.b = Math.random();
5 } else {
6 this.b = Math.random();
7 this.a = Math.random();
8 }
9 }

10 function sum(base, p1, p2) {
11 return base[p1] + base[p2] ;
12 }
13 for(var i=1;i<100000;i++) {
14 sum(new C(i), ’a’, ’b’);
15 }

function C(i) {
if (i % 2 === 0) {
this.a = Math.random();
this.b = Math.random();

} else {
this.a = Math.random();
this.b = Math.random();

}
}
function sum(base, p1, p2) {
return base[p1] + base[p2];

}
for(var i=1;i<100000;i++) {
sum(new C(i), ’a’, ’b’);

}

Figure 6: Example of inconsistent object layouts.

UNK

NUM

NON

numeric element

non-numeric element

non-numeric element

numeric element

numeric/non-numeric element

UNK means uninitialized array of unknown type.
NUM means numeric array. NON means non-numeric array.

Figure 7: State machine of an array.

integer/double array to an array of non-numeric values is an
expensive operation.
Profiling To detect performance problems caused by trans-
forming numeric arrays into non-numeric arrays, Profiler
NNA in Table 2 maintains for each array a finite state ma-
chine with three states: unknown, numeric, and non-numeric
(Figure 7). When an array gets created, the profiler uses the
newObject function to store the initial state of the array
as the array’s shadow-information. The state is initialized
to unknown if the array is empty or if all elements are
uninitialized. If all the elements of the array are numeric,
then the state is initialized to numeric. Otherwise, the state
is initialized to non-numeric. The profiler updates the state
of an array whenever the program writes into the array
through a put property operation, as shown in Figure 7.
The profiler increments the unfriendliness counter of a code
location that writes an array element when transitioning
from numeric to non-numeric.

For the example in Figure 5, the profiler warns about line 4
because a numeric array gets a non-numeric value.

2.2.6 Inconsistent Object Layouts
A common pattern of JIT-unfriendly code is to construct

objects of the same type in a way that forces the compiler
to use multiple representations for this type. Such inconsis-
tent object layouts prevent an optimization that specializes
property accesses for recurring object layouts.
Micro-benchmark The program in Figure 6 has a con-
structor function C that creates objects with two properties
a and b. Depending on the value of i, these properties are
created in different orders. The main loop of the program
repeatedly creates C instances and passes them to sum, which
accesses the two properties of the object. The expression
base[p1] returns the value of the property whose name
is stored as a string in the variable p1. The performance
of the example can be significantly improved by swapping
lines 6 and 7. The modified code, given on the right of
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Figure 6, runs 7.5% and 19.9% faster in Firefox and Chrome,
respectively.2

Explanation The reason for this speedup is that the orig-
inal code creates C objects with two possible layouts of the
properties. In one layout, a appears at offset 0 and b appears
at offset 1, whereas in the other layout, the order is reversed.
As a result, the JIT compiler fails to specialize the code
for the property lookups in sum. Instead of accessing the
properties at a fixed offset, the executed code accesses the
properties via an expensive hash table lookup. We refer
to [15] for a detailed explanation of the problem.
Profiling To find performance problems caused by inconsis-
tent object layouts, Profiler IOL in Table 2 tracks the hidden
class associated with each object and uses the unfriendliness
counter to store the number of inline cache misses that occur
at code locations that access properties. The profiler imple-
ments the newObject() and putProp() functions to create or
update the profiler’s representation of the hidden class of an
object. This representation abstract from the implementa-
tion of hidden classes in JavaScript engines by representing
the class as a list of the object’s property names, in the
order in which the object’s properties are initialized. The
getOrCreateHC() function (in Table 2) iterates over the
property names of the object and checks if there exists a
hidden class that matches the list of property names. If
there is a matching hidden class, the function returns this
hidden class, and the profiler associates it with the object.
Otherwise, the profiler creates a new list of property names
and associates it with the object. The profiler also caches
created hidden classes for later reuse.

Based on the hidden class information, the profiler tracks
whether property accesses cause inline cache misses by main-
taining the following shadow-information for each location
with a put or get property operation: (i) The cachedHC
storage, which points to the hidden class of the most re-
cently accessed base object. (ii) The cachedProp storage,
which stores the name of the most recently accessed prop-
erty. Whenever the program performs a get or put property
operation, the profiler updates the information associated
with the operation’s code location. If the hidden class of
the operation’s base object or the accessed property dif-
fers from cachedHC and cachedProp, respectively, then the
profiler increments the unfriendliness counter. This case
corresponds to an inline cache miss, i.e., the JIT compiler
cannot execute the code specialized for this location and
must fall back on slower, generic code. At the end of the
execution, the profiler reports code locations with a non-
zero unfriendliness counter and ranks them in the same way
as described in Section 2.2.1.

For the example in Figure 6, JITProf identifies two inline
cache misses at line 11, and reports the following message:

Prop. access at line 11:10 has missed cache 99999 time(s)
Accessed "a" of obj. created at line 14:11 99999 time(s)
Layout [|b|a|]: Observed 50000 time(s)
Layout [|a|b|]: Observed 49999 time(s)

Prop. access at line 11:21 has missed cache 99999 time(s)
Accessed "b" of obj. created at line 14:11 99999 time(s)
Layout [|b|a|]: Observed 50000 time(s)
Layout [|a|b|]: Observed 49999 time(s)

2All performance improvements reported in this paper
are statistically significant; Section 4.1 explains our
methodology in detail.

1 var size = 5000000;
2 var arr= new Array(size) ;
3 for (var i=0;i<size;i++)
4 arr[i%size] = i%255;

var size = 5000000;
var arr=new Uint8Array(size);
for (var i=0;i<size;i++)
arr[i%size] = i%255;

Figure 8: Inappropriate use of generic arrays.

2.2.7 Unnecessary Use of Generic Arrays
JavaScript has generic arrays, created with new Array()

or a literal, and typed arrays, created, e.g., with Int8Array().
Typed arrays enable various optimizations and programmers
should use them to improve performance.
Micro-benchmark The code on the left of Figure 8 cre-
ates a large generic array and stores integer values ranging
between 0 and 254 into it. Modifying the code so that it
uses the typed array Uint8Array, improves performance by
60.1% and 29.6% in Firefox and Chrome, respectively.
Explanation Typed arrays allow the JIT engine to use C-
like type-specialized arrays of fixed length, instead of more
complex data structures. The change in Figure 8 leads to
a more compact memory representation and avoids unnec-
essary runtime checks. JIT engines might optimize generic
numeric arrays in a similar way (Section 2.2.5), but often fail
to pick the most efficient array representation. Explicitly
using typed arrays helps the engine optimize the program.
Profiling To detect performance problems caused by unnec-
essary use of generic arrays, Profiler GA in Table 2 tracks
operations performed on such arrays. The profiler associates
the following boolean flags with each generic array; each flag
represents a reason why a generic array cannot be replaced
by a typed array: (i) One flag per kind of typed array, which
represent whether the array stores elements that cannot
be stored into the particular typed array. For example,
array[1] = 0.1 excludes all typed arrays that can store
only integer values, such as Uint8Array and Uint16Array.
(ii) Whether the program applies the typeof operator on
the array. If the program checks the array’s type, changing
the type may change the program’s semantics. (iii) Whether
the program uses built-in functions of generic arrays, such
as array.slice. (iv) Whether the program uses the array
like an object, e.g., by attaching a property to it. The
profiler updates these flags by implementing the putProp(),
unary(), and invokeFun() functions. At the end of the
execution, the profiler identifies arrays where at least one
flag from category (i) and all flags (ii) to (iv) are true.
The profiler reports these arrays and a list of typed array
constructors that can be used for creating the array.

Note that due to the nature of dynamic analysis, the
profiler result for this JIT-unfriendly code pattern is based
on one execution and thus not sound for all execution paths.
Instead, the profiler recommends potentially unnecessary
uses of generic arrays and, in contrast to the other analyses,
relies on the developer to determine whether or not it is safe
to refactor those arrays.

For the example in Figure 8, the profiler reports the generic
array creation at line 2 and suggests to use a Uint8Array.

Table 3 summarizes the JIT-unfriendly code patterns and
the performance improvements discussed in this section. Since
different JavaScript engines perform different optimizations,
they suffer to a different degree from particular JIT-unfriendly
code patterns. JITProf can address both engine-specific and
cross-engine patterns. Most patterns we address here cause
performance problems in multiple engines.
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Table 3: Performance improvements on micro-
benchmarks of JIT-unfriendly code patterns.

JIT-unfriendly code pattern Firefox Chrome

Inconsistent object layouts 7.5% 19.9%
Polymorphic operations 92.1% 72.2%
Binary operations on undefined 1.8% 82.8%
Non-contiguous arrays 97.5% 90.2%
Accessing undefined array elements 73.9% 70.2%
Storing non-numeric values in numeric arrays 14.9% 83.8%
Unnecessary use of generic arrays 60.1% 29.6%

The profilers described in this section approximate the
behavior of popular JIT engines to identify JIT-unfriendly
code locations. These approximations are based on simplify-
ing assumptions about how JIT compilation for JavaScript
works, which may not always hold for every JavaScript en-
gine. For example, we model inline caching in a monomor-
phic way and ignore the fact that a JavaScript engine may
use polymorphic inline caching. Approximating the behav-
ior of the JavaScript engine is a deliberate design decision
that allows for implementing analyses for JIT-unfriendly
code patterns with a few lines of code, and without requiring
knowledge about the engine’s implementation details.

2.3 Sampling
Profiling all runtime events that may be of interest for

profilers imposes a significant runtime overhead. To enable
developers to use JITProf as a practical profiling tool, we use
sampling to reduce this overhead. We use both function level
and instruction level sampling, combined in a decaying sam-
pling strategy that focuses the profiling effort on locations
that provide evidence for being JIT-unfriendly. During our
experiments, sampling reduces the runtime overhead from a
median of 627x to a median of 18x, without changing the
recommendations reported to the user.
Function Level Sampling JITProf transforms each func-
tion body pc of the analyzed program so that it contains
both the original program code p of the function body and
the instrumented code p′ of the function body:

pc = function (...) { if (flag) p else p′ }
During the program’s execution, JITProf controls the over-
head imposed by profiling the function by switches the flag

to selectively run the original or the instrumented code. This
level of sampling reduces the overhead caused by the added
code inside the instrumented program.
Instruction Level Sampling The instrumented code p′

invokes the functions in the upper part of Table 1 to notify
profilers about runtime events. To enable fine-grained con-
trol of JITProf’s overhead, we complement function level
sampling with instruction level sampling. Therefore, we
maintain flag for every code location that may trigger a
runtime event of interest and notify profilers only if the
flag is set to true. By controlling these flags, JITProf can
focus the profiling effort on locations that are of particular
interest. This level of sampling additionally reduces the
overhead caused by JITProf analyses.
Sampling Strategy The sampling strategy decides when
to enable profiling for a particular function and instruction.
As a default, JITProf uses a decaying sampling strategy.
Conceptually, JITProf assigns a sampling rate to each func-
tion and instruction, and takes a random decision according
to the current sampling rate whenever the function or in-
struction is executed. The decaying sampling strategy starts

by profiling all executions of a function or instruction, and
then gradually reduces the sampling rate as the function
or instruction is triggered more often. The sampling rate
is 1/(1 + n), where n is the number of samples retrieved
so far from a particular function or instruction. Once the
sampling rate reaches a very low value (0.05%), we keep it
at this value to allow JITProf to detect code locations as
JIT-unfriendly even if their JIT unfriendliness only shows
after reaching the location many times.

3. IMPLEMENTATION
To avoid limiting JITProf to a particular JavaScript en-

gine, we implement it via a source-to-source transformation
that adds analysis code to a given program. The implemen-
tation builds on the instrumentation and dynamic analysis
framework Jalangi [40] and is available as open-source.
JITProf tracks unfriendliness counters for code locations via
a global map that assigns unique identifiers of code locations
to the current unfriendliness counter at the location. The
map is filled lazily, i.e., JITProf tracks counters only for
source locations involved in a JIT-unfriendly pattern. To im-
plement sampling, JITProf precomputes random decisions
before the program’s execution to avoid the overhead of
taking a random decision [27].

To be easily extensible to support further JIT-unfriendly
code patterns, JITProf offers an API that has two parts.
First, JITProf provides callback hooks that analyses imple-
ment to track particular runtime operations of the program.
The operations are at a lower level than JavaScript state-
ments, e.g., complex expressions are split into multiple unary
and binary operations. Second, JITProf provides an API for
functionalities shared by several analyses, such as accessing
the shadow value of an object, maintaining an unfriendliness
counter for code locations, and ranking locations by their
unfriendliness counter. Based on the JITProf infrastructure,
our implementations of the analyses in Section 2 require
between 56 and 385 lines of JavaScript code.

4. EVALUATION
We evaluate JITProf by studying the prevalence of JIT-

unfriendly code in real-world JavaScript programs and by
assessing its effectiveness as a profiler to detect optimization
opportunities in benchmarks that are commonly used to
assess JavaScript performance.

4.1 Experimental Methodology
To study the prevalence of JIT-unfriendly code in the web,

we apply JITProf to the 50 most popular websites.3 For each
site, we analyze the JavaScript code executed by loading the
start page and by manually exercising the site with a few
typical user interactions. Furthermore, we apply JITProf to
all benchmarks from the Google Octane and the SunSpider
benchmarks.

To evaluate JITProf as a profiler that detects optimization
opportunities, we apply it to all benchmarks and inspect the
top three reported code locations per program and pattern,
refactor them in a semantics-preserving way by replacing
JIT-unfriendly code with JIT-friendly code, and measure
whether these simple changes lead to a significant perfor-
mance improvement in the Firefox and Chrome browsers.
Each change fixes only the problem reported by JITProf
and does not apply any other optimization.

3
http://www.alexa.com/
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Figure 9: Prevalence of JIT-unfriendly code.

To evaluate JITProf as a profiler, we focus on benchmark
programs for three reasons. First, popular JavaScript en-
gines are highly tuned towards these benchmarks, i.e., find-
ing optimization opportunities is particularly challenging.
Second, reliably measuring the performance of an interactive
website is challenging, e.g., because it depends on user and
network events. JSBench [38] addresses this problem by
recording code executed by a website, but is not applicable
in our evaluation because it radically changes the structure
of the code, e.g., by unrolling loops4. Finally, refactoring
the JavaScript code of websites is challenging because most
JavasScript files on each of those website are minified and
uglified, and because we cannot easily change the code on
the server that responds to AJAX requests.

To assess whether a change improves the performance, we
compare the execution time of the original and the mod-
ified program in two popular browsers, Firefox 31.0 and
Chrome 36.0. To obtain reliable performance data [14, 30,
9], we repeat the following steps 50 times: (1) Open a fresh
browser instance and run the original benchmark. (2) Open
a fresh browser instance and run the modified benchmark.
Each run yields a benchmark score that summarizes the per-
formance. Given these scores, we use the independent T-test
(95% confidence interval) to check whether there is a statisti-
cally significant performance difference between the original
and the modified program. All performance differences are
statistically significant. Experiments are performed on Mac
OS X 10.9 using a 2.40GHz Intel Core i7-3635QM CPU
machine with 8GB memory.

4.2 Prevalence of JIT Unfriendliness
Figure 9 illustrates the prevalence of JIT-unfriendly code

patterns on the 50 most popular websites. The figure shows
the total number of JIT-unfriendly code locations reported
by JITProf (vertical axis), depending on the minimum un-
friendliness counter required to consider a location as JIT-
unfriendly (horizontal axis). The results show that JIT-
unfriendly code patterns are prevalent in practice and that
some patterns are more common than others. These results
provide guidance on which patterns to focus on.

4.3 Profiling JIT-Unfriendly Code Locations
4.3.1 JIT-Unfriendly Code Found by JITProf

JITProf detects JIT-unfriendly code that causes easy to
avoid performance problems in 15 of the 39 benchmarks. Ta-
ble 4.3.1 summarizes the performance improvements achieved
by avoiding these problems. The “JITProf Rank” column
indicates which analysis detects a problem and the position

4As a result of unrolling, JITProf would miss, e.g., a JIT-
unfriendly code location in a loop because each location is
triggered at most once.

Table 4: Performance improvement achieved by
avoiding JIT-unfriendly code patterns.

Benchmark: CPR JITProf Ch. Avg. improvement
SunSpider (SS) & FF|CH Rank LOC (stat. significant)

Octane (Oct)
(function

level)
(statement

level)
Firefox Chrome

SS-Crypto-SHA1 2 |5+
1 in UAE,
PO, BOU

6 3.3±0.9% 26.3±0.4%

SS-Str-Tagcloud - | 5 1 in IOL 15 - 11.7±0.7%

SS-Crypto-MD5 3 |5+
1 in UAE,
PO, BOU

6 - 24.6±0.1%

SS-Format-Tofte 2 | 1 1 in UAE 2 - 3.4±0.2%
SS-3d-Cube 5+| 5 1 in NCA 1 - 1.1±0.1%
SS-Format-Xparb 4 | 1 1 in PO 2 19.7±0.5% 22.4±0.3%
SS-3d-Raytrace 5 | 5 1 in NNA 4 - 2.6±0.2%
SS-3d-Morph 1 | 1 1 in GA 1 - 1.5±0.3%
SS-Fannkuch 1 | 1 1 in GA 3 8.3±0.9% 5.4±2.3%

Oct-Splay 5 |5+ 1 in IOL 2 3.5±0.9% 15.1±0.3%
Oct-SplayLatency 5 |5+ 1 in IOL 2 - 3.8±0.6%
Oct-DeltaBlue 5+|5+ 2 in IOL 6 1.4±0.2% -
Oct-RayTrace 5+| 1 1 in IOL 18 - 12.9±1.9%
Oct-Box2D 5+|5+ 2 in IOL 1 - 7.5±0.6%
Oct-Crypto 5+|5+ 1 in GA 1 13.8±4.9% 3.3±0.4%

CPR means CPU Profiler Rank. FF means Firebug Profiler, CH
means Google Chrome’s profiler. Ch. LOC is the number of changed
LOC. Short names (e.g., IOL) in the third column refers to the
profilers defined in Table 2. - means no ranking or no statistically
significant difference. Confidence intervals of improvements of Firefox
and Chrome in the last two columns are at 95% confidence level [14].

of the problem in the ranked list of reported code locations.
The table also shows the amount of changes to avoid the
problem. The last two columns of the table show the perfor-
mance improvement achieved with these changes, in Firefox
and Chrome, respectively.

All JIT-unfriendly code locations detected by JITProf and
their refactorings are documented in our technical report [15].
Due to limited space, we only discuss a few representative
examples in the following.
Inconsistent Object Layouts in Octane-Splay. JITProf
reports a code location where inconsistent object layouts
occur a total of 135 times. The layout of the objects at a
statement that retrieves a property frequently alternate be-
tween key|value|left|right and key|value|right|left.
The problem boils down to the following code, which initial-
izes the properties left and right in two possible orders:

1 var node = new SplayTree.Node(key, value);
2 if (key > this.root_.key) {
3 node.left = this.root_;
4 node.right = this.root_.right;
5 ...
6 } else {
7 node.right = this.root_;
8 node.left = this.root_.left;
9 ...

10 }

We swap the first two statements in the else branch
so that the object layout is always key|value|left|right,
which improves performance by 3.5% and 15.1% in Firefox
and Chrome, respectively.
Polymorphic Operations in SS-Format-Xparb. JITProf
reports a code location that frequently performs a poly-
morphic plus operation. Specifically, the analysis observes
operand types string + string 699 times and operand types
object + string 3,331 times. The behavior is due to the
following function, which returns either a primitive string
value or a String object, depending on the value of val:

1 String.leftPad = function (val, size, ch) {
2 var result = new String(val);
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3 if (ch == null) { ch = " "; }
4 while (result.length < size){
5 result = ch + result;
6 }
7 return result;
8 }

To avoid this problem, we refactor String.leftPad by
replacing line 2 with:

1 var result = val + ’’;
2 var tmp = new String(val) + ’’;

The modified code initializes result with a primitive string
value. For a fair performance comparison, we add the state-
ment at line 2 to retain a String object construction opera-
tion and a monomorphic ”object + string” concatenation
operation. This simple change leads to 19.7% and 22.4% per-
formance improvement in Firefox and Chrome, respectively.
Fixing the problem by removing the statement that calls the
String constructor, which is the solution a developer may
choose, leads to even larger speedup.
Multiple undefined-related Problems in SunSpider-
MD5. JITProf reports occurrences of three JIT-unfriendly
code patterns for the following code snippet:

1 function str2binl(str) {
2 var bin = Array(); var mask = (1 << chrsz) - 1;
3 for (var i = 0; i < str.length * chrsz; i += chrsz)
4 bin[i>>5] |= (str.charCodeAt(i/chrsz) & mask)<<(i%32);
5 return bin;
6 }

The function creates an empty array and reads uninitial-
ized elements of the array in a loop before assigning values
to those elements. JITProf reports that the code accesses
undefined elements of an array 3,956 times at line 4, that
this line repeatedly performs bitwise OR operations on the
undefined value, and that this operation is polymorphic
because it operates on numbers and undefined.

This refactoring avoids these JIT-unfriendly operations:

1 function str2binl(str) {
2 var len = (str.length*chrsz)>>5; var bin=new Array(len);
3 for (var i = 0; i < len; i++) bin[i] = 0;
4 var mask = (1 << chrsz) - 1;
5 for (var i = 0; i < str.length * chrsz; i += chrsz)
6 bin[i>>5] |= (str.charCodeAt(i/chrsz) & mask)<<(i%32);
7 return bin;
8 }

The modified code initializes the array bin with a prede-
fined size (stored in the variable len) and then initializes all
of its elements with zero. Although we introduce additional
code, this change leads to a 24.6% improvement in Chrome.
Non-contiguous Arrays in SunSpider-Cube. JITProf
detects code that creates a non-contiguous array 208 times.
The example is similar to Figure 3: an array is initialized
in reverse order, and we modify the code by initializing
the array from lower to higher index. As a result, the
array increases contiguously, which results in a small but
statistically significant improvement of 1.1% in Chrome.

4.3.2 Comparison with CPU-Time Profiling
The most popular existing approach for finding perfor-

mance bottlenecks is CPU-time profiling [17]. To compare
JITProf with CPU-time profiling, we analyze the bench-
mark programs in Table 4.3.1 with the Firebug Profiler5

and Google Chrome’s CPU Profiler. CPU-time profiling
reports a list of functions in which time is spent during the
execution, sorted by the time spent in the function itself, i.e.,

5
https://getfirebug.com/wiki/index.php/Profiler

without the time spent in callees. The “CPU Profiler Rank”
column in Table 4.3.1 shows for each JIT-unfriendly location
identified by JITProf the CPU profiling rank of the function
that contains the code location. Most code locations appear
on a higher rank in JITProf’s output than with CPU pro-
filing. The function of one code location (SunSpider-String-
Tagcloud) does not even appear in the Firebug Profiler’s
output, presumably because the program does not spend a
significant amount of time in the function that contains the
JIT-unfriendly code.

In addition to the higher rank of JIT-unfriendly code loca-
tions, JITProf improves upon traditional CPU-time profiling
by pinpointing a single code location and by explaining why
this location causes slowdown. In contrast, CPU-time profil-
ing suggests entire functions as optimization candidates. For
example, the performance problem in SunSpider-Format-
Tofte is in a function with 291 lines of code. Instead of
letting developers find optimization opportunities in this
function, JITProf precisely points to the problem.

Overall, our results suggest that JITProf enables develop-
ers to find JIT-unfriendly code locations quicker than CPU-
time profiling. In practice, we expect both JITProf and
traditional CPU-time profiling to be used in combination.
Developers can identify JIT compilation-related problems
quickly with JITProf and, if necessary, use other profilers
afterwards.

4.3.3 Non-optimizable JIT-Unfriendly Code
For some of the JIT-unfriendly code locations reported

by JITProf, we fail to improve performance with a simple
refactoring. A common pattern of such non-optimizable
code is an object that is used as a dictionary or map. For
such objects, the program initializes properties outside of the
constructor, making the object structure unpredictable and
leading to multiple hidden classes for a single object. Dic-
tionary objects often cause inline cache misses because the
object’s structure varies in an unpredictable way at runtime,
but we cannot easily refactor such problems. Other com-
mon patterns are JIT-unfriendly code that is not executed
frequently and code where eliminating the JIT-unfriendly
code requires adding statements. For example, creating
consistent object layouts may require adding property ini-
tialization statements in a constructor, and executing these
additional statements takes more time than the time saved
from avoiding the JIT-unfriendly code. Developers can avoid
optimizing such code by inspecting only the top-ranked re-
ports from JITProf, which occur relatively often.

4.4 Runtime Overhead
Table 4.3.1 shows the time for profiling benchmarks and

the slowdown compared to normal execution. As shown
by the “Time” and “PS” columns, a naive implementation
of JITProf imposes a significant runtime overhead (median:
627x). Fortunately, sampling (Section 2.3) reduces this over-
head to a median of 18x, without changing the JIT-unfriendly
code locations reported by JITProf. The slowdown with
sampling is in the same order of magnitude as that of com-
parable dynamic analyses [40, 35, 25]. We consider the over-
head to be acceptable during testing because both client-
side and server-side JavaScript applications typically handle
events within a few seconds to ensure that the application
is responsive. Improving the performance of frequently ex-
ecuted event handlers can potentially lead to better user
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Table 5: Benchmarks used for the evaluation and performance statistics.

Benchmark LOC Time PS ˜Time P̃S Benchmark LOC Time PS ˜Time P̃S Benchmark LOC Time PS ˜Time P̃S

SS-Controlflow-Recursive 25 2.93 674 0.07 17 SS-String-Fasta 90 4.13 391 0.48 45 Oct-Splay 395 0.59 117 0.06 12
SS-Bitops-Bits-in-Byte 26 5.38 1520 0.13 36 SS-Math-Cordic 101 5.6 943 0.12 20 Oct-Navi-Stokes 407 41.64 1859 2.01 90
SS-Bitops-Bitwise-And 31 3.09 936 0.23 71 SS-String-Base64 136 4.16 457 0.42 46 Oct-Richards 537 2.47 386 0.12 18
SS-Math-Partial-Sums 33 3.39 301 0.25 22 SS-Access-Nbody 170 12.38 1649 0.10 13 Oct-DeltaBlue 880 3.94 267 0.24 16
SS-Bitops-Nsieve-Bits 35 7.05 920 0.33 43 SS-Crypto-SHA1 225 2.87 262 0.20 19 Oct-Raytrace 904 13.45 652 0.34 16
SS-Bitops-3bit-Bits 38 4.12 1577 0.16 62 SS-String-Tagcloud 266 4.88 173 0.36 13 Oct-Code-Load 1527 2.08 108 0.3 16
SS-Access-Nsieve 39 3.51 585 0.33 55 SS-Crypto-MD5 288 2.83 414 0.16 24 Oct-Crypto 1699 64.52 3418 0.37 20
SS-Math-Spectral-Norm 51 6.13 1065 0.1 18 SS-Date-Tofte 300 9.65 652 0.15 10 Oct-Regexp 1765 6.82 91 0.7 9
SS-Access-Binary-Trees 52 4.48 1077 0.14 33 SS-3d-Cube 339 18.5 1500 0.16 13 Oct-Earl-Boyer 4683 38.73 970 0.91 23
SS-3d-Morph 56 6.48 677 0.36 37 SS-Date-Xparb 418 2.92 195 0.13 9 Oct-Box2d 9537 85.41 460 2.41 13
SS-String-Unpack-Code 67 3.09 114 0.17 6 SS-Crypto-AES 425 8.64 816 0.15 14 Oct-Gbemu 11106 294.38 1228 9.59 40
SS-Access-Fannkuch 68 11.64 1455 0.19 24 SS-3d-Raytrace 443 9.03 627 0.21 14 Oct-Typescript 25911 785.64 525 13.53 9
SS-String-Validate-Input 90 0.15 85 0.01 8 SS-Regexp-DNA 1714 0.15 14 0.02 2 Oct-Pdfjs 33071 75.16 300 5.62 22

Time means total running and analysis time JITProf (seconds). PS means profiling slowdown (×). ˜Time and P̃S are with sampling. SS- and
Oct- mean SunSpider and Octane benchmark, respectively.

experience in the browser6 and increased throughput of the
server. Besides sampling, our implementation is not par-
ticularly optimized for performance but instead focuses on
providing a JavaScript engine-independent and easily exten-
sible framework. We believe that other optimizations or
more sophisticated sampling [10, 43] can reduce overhead
even further.

5. RELATED WORK
Just-in-time Compilation Recent work includes trace-
based dynamic type specialization [13], memoization of side
effect-free methods [51], identifying and removing short-lived
objects [41], just-in-time value specialization [8], and study-
ing how the effectiveness of JIT compilation depends on the
compilation order [11]. Hackett et al. [19] propose a static-
dynamic type inference that allows for omitting unnecessary
runtime checks. Ahn et al. modify the structure of hidden
classes to increase the inline caching hit rate [4]. These ap-
proaches modify the JIT engine to improve the performance
of existing programs, whereas JITProf supports developers
in refactoring a program to improve its performance on ex-
isting JavaScript engines. We expect future improvements
of JIT compilation, but we also believe that there will always
remain JIT-unfriendly code.
Performance Analysis and Profiling Performance bugs
are common [23] and various approaches detect and diagnose
them. St-Amour et al. [45] modify a compiler so that it
suggest code changes that enable additional optimizations;
they have recently adapted the approach to JavaScript [44].
In contrast to this compile time analysis implemented in-
side a (JIT) compiler, JITProf is a runtime analysis that
is implemented without modifying the JavaScript engine,
making it easier for non-experts to support additional JIT-
unfriendly code patterns. JITInspector7 shows which op-
erations the JIT compiler optimizes and an intermediate
representation of the generated code. The approach seems
appropriate to debug a JIT compiler; JITProf targets devel-
opers of JavaScript programs. Developers compare the exe-
cution time of code snippets across JavaScript engines8 and
get advice on how to write efficient code [54]. In contrast to
these generic and program-agnostic guidelines, our approach
pinpoints program-specific optimization opportunities.

Other work profiles the interaction between a program and
its execution environment, e.g., regarding memory caching [12],

6Studies show that over 0.1s delay in responsive UI causes
the user to feel disconnected from the interface [29, 31].
7
https://addons.mozilla.org/en-US/firefox/addon/jit-inspector/

8
http://jsperf.com

energy consumption [26, 6], and other interactions [22] Perf-
Diff helps localize performance differences between execu-
tion environments [55]. Instead, JITProf pinpoints problems
that may exist in multiple execution environments.

Xu et al. and Yan et al. propose approaches to find exces-
sive memory usage [49, 48, 50, 52]. TAEDS is a framework
to record and analyze data structure evolution during the
execution [46]. Marinov and O’Callahan propose an analysis
to find optimization opportunities due to equal objects [28],
and Xu refines this idea to detect allocation sites where sim-
ilar objects are created repeatedly [47]. Toddler [33] detects
loops where many iterations have similar memory access
patterns. Hammacher et al. propose a dynamic analysis to
identify potential for parallelization [20]. Profiling is also
used to understand the performance of interactive user inter-
face applications [24, 37, 34] and large-scale, parallel HPC
programs [5, 42]. Other approaches combine traces from
multiple users to localize performance problems [21, 53].
In contrast to all the above, JITProf detects performance
problems specific to the program’s execution environment.
JavaScript Analysis Dynamic analysis for JavaScript is
useful for lint-like checking of coding rules [16], to find in-
consistent types [35], and to empirically study the usage
of particular language features [36]. JITProf complements
these approaches by addressing performance problems re-
lated to JIT compilation.
6. CONCLUSION

This paper presents JITProf, a profiling framework to
pinpoint code locations that prohibit profitable JIT opti-
mizations. We instantiate the framework for seven code
patterns that lead to performance bottlenecks on popular
JavaScript engines and show that these patterns occur in
popular websites, that JITProf finds instances of these pat-
terns in widely used benchmark programs, and that simple
changes of the programs to avoid the JIT-unfriendly code
lead to significant performance improvements. Given the
increasing popularity of JavaScript, we consider our work to
be an important step toward improving the efficiency of an
increasingly large fraction of all executed software.
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